在工業(yè)4.0浪潮下,流程工業(yè)面臨高維非線性、動(dòng)態(tài)不確定性及多目標(biāo)約束等復(fù)雜挑戰(zhàn)。傳統(tǒng)基于機(jī)理模型或啟發(fā)式規(guī)則的優(yōu)化方法已難以滿足實(shí)時(shí)決策需求,而強(qiáng)化學(xué)習(xí)(RL)憑借其自適應(yīng)試錯(cuò)學(xué)習(xí)機(jī)制,為工業(yè)流程優(yōu)化提供了突破性解決方案。本文從算法訓(xùn)練框架與收斂性分析兩個(gè)維度,探討強(qiáng)化學(xué)習(xí)在工業(yè)流程優(yōu)化中的技術(shù)實(shí)現(xiàn)路徑。