日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當(dāng)前位置:首頁(yè) > 智能硬件 > vr|ar|虛擬現(xiàn)實(shí)
[導(dǎo)讀] (文章來(lái)源:VR陀螺網(wǎng)) 當(dāng)我們通過(guò)攝像頭得到深度圖后,下一步就是把深度圖輸入給算法,算法可以輸出我們手部所有關(guān)鍵點(diǎn)的 3D 位置。手部關(guān)鍵點(diǎn)也可以理解為手部骨架的關(guān)節(jié)點(diǎn),通常用 21

(文章來(lái)源:VR陀螺網(wǎng))

當(dāng)我們通過(guò)攝像頭得到深度圖后,下一步就是把深度圖輸入給算法,算法可以輸出我們手部所有關(guān)鍵點(diǎn)的 3D 位置。手部關(guān)鍵點(diǎn)也可以理解為手部骨架的關(guān)節(jié)點(diǎn),通常用 21 個(gè) 3D 關(guān)鍵點(diǎn)來(lái)描述。每個(gè) 3D 關(guān)鍵點(diǎn)有 3 個(gè)自由度,那么輸出維度就是 21*3。目前學(xué)術(shù)界已經(jīng)提出各種算法用于解決“基于深度的手勢(shì)姿態(tài)估計(jì)問(wèn)題“,這些算法大體可以分成模型驅(qū)動(dòng)(model-driven)和數(shù)據(jù)驅(qū)動(dòng)(data-driven)兩種方式。

1、模型驅(qū)動(dòng)類算法,此類算法通常是預(yù)先用手部 pose(pose 指位姿參數(shù)或節(jié)點(diǎn)位置,后文將統(tǒng)稱為 pose)生成一系列手的幾何模型,并建立一個(gè)搜索空間(所有可能的手勢(shì)幾何模型的集合),然后在搜索空間內(nèi)找到與輸入深度圖最匹配的模型。此時(shí),模型對(duì)應(yīng)的參數(shù)就是所求的 pose。模型驅(qū)動(dòng)類算法通常需要設(shè)計(jì)一種方式把 pose 轉(zhuǎn)換成對(duì)應(yīng)的幾何模型。

此論文用了 linear blend skinning(一種骨骼蒙皮動(dòng)畫算法):意思就是給骨架蒙上一層皮膚,并讓皮膚跟隨骨骼運(yùn)動(dòng)一起變化,多用于動(dòng)畫領(lǐng)域。先把 pose 轉(zhuǎn)換成對(duì)應(yīng)的 mesh(下圖左側(cè)),在進(jìn)一步轉(zhuǎn)換成光滑曲面模型。我們可以理解為 pose 是自變量,幾何模型可由 pose 算出,且?guī)缀文P团c pose 一一對(duì)應(yīng)。

輸入的手部深度圖可轉(zhuǎn)化為點(diǎn)云, 此點(diǎn)云就相當(dāng)于在真實(shí)的手表面上采集到的一些 3D 點(diǎn),如下圖中的紅點(diǎn)和藍(lán)點(diǎn):這樣就可以定義損失函數(shù)為點(diǎn)云中的點(diǎn)到模型表面的距離(上圖中的紅線),以此描述深度圖和pose的相似度。損失函數(shù)的輸入是深度圖和 pose,輸出是差異度。損失函數(shù)的輸出值越小,說(shuō)明輸入的深度圖和pose越相似。

因此,只要在搜索空間中找到令損失函數(shù)最小的 pose 即為所求的pose。但因搜索空間不能寫成解析形式,沒(méi)法一次性求出損失函數(shù)的最小值,通常只能用數(shù)值計(jì)算方法,如PSO,ICP等,不斷迭代計(jì)算得到最優(yōu)解。迭代的數(shù)值解法通常對(duì)初始化要求較高,若初始化的不好,則需要很長(zhǎng)時(shí)間才能迭代收斂,還有可能無(wú)法收斂到全局最小值(因?yàn)閾p失函數(shù)是非凸函數(shù)),所以算法實(shí)現(xiàn)時(shí),通常利用上一幀的pose來(lái)初始化當(dāng)前幀的計(jì)算。

這種模型驅(qū)動(dòng)類方法需要手工設(shè)計(jì)幾何模型和損失函數(shù)。簡(jiǎn)單的幾何模型計(jì)算量小,復(fù)雜的幾何模型準(zhǔn)確度高。通常設(shè)計(jì)模型時(shí)需要在準(zhǔn)確度和性能之間做權(quán)衡。模型驅(qū)動(dòng)類的算法優(yōu)勢(shì)是不需要任何訓(xùn)練數(shù)據(jù),只要設(shè)計(jì)的好,寫完就可以直接用。 缺點(diǎn)是需要手工設(shè)計(jì)模型,計(jì)算量較大,容易誤差累計(jì)導(dǎo)致漂移,對(duì)初始化要求高,通常只能用在手勢(shì)追蹤領(lǐng)域。

2、數(shù)據(jù)驅(qū)動(dòng)類算法,此類算法是指利用收集數(shù)據(jù)中訓(xùn)練樣本與其對(duì)應(yīng)的標(biāo)簽關(guān)系,讓機(jī)器學(xué)習(xí)一個(gè)從樣本到標(biāo)簽的映射。 此類算法屬于判別式方法(Discriminative Approaches)。

這樣的機(jī)器學(xué)習(xí)算法有很多,可以是早期使用的隨機(jī)森林,SVM 或是最近研究的火熱的神經(jīng)網(wǎng)絡(luò)等。此類方法的優(yōu)點(diǎn)是不需要設(shè)計(jì)復(fù)雜的模型,缺點(diǎn)是需要大數(shù)據(jù)。但現(xiàn)在大數(shù)據(jù)時(shí)代數(shù)據(jù)量已經(jīng)不是問(wèn)題,這種數(shù)據(jù)驅(qū)動(dòng)的方式已經(jīng)成為目前的主流研究方向。

早期學(xué)術(shù)界研究手勢(shì)關(guān)鍵點(diǎn)回歸的經(jīng)典方法有 Cascade regression, Latent Regression Forest 等。近些年研究主要集中在各類神經(jīng)網(wǎng)絡(luò)如:DeepPrior 系列、REN、pose guided、3D-CNN、MulTI-View CNNs、HandPointNet、Feedback Loop 等。

由于此處討論的用于手勢(shì)的神經(jīng)網(wǎng)絡(luò)與普通的圖的神經(jīng)網(wǎng)絡(luò)并無(wú)本質(zhì)差異,而神經(jīng)網(wǎng)絡(luò)的科普文章已經(jīng)很多,這里就不做科普了,我們僅挑幾個(gè)有代表性的網(wǎng)絡(luò)結(jié)構(gòu)介紹一下:DeepPrior:網(wǎng)絡(luò)結(jié)構(gòu)大體如下圖,通過(guò)初始網(wǎng)絡(luò)得到粗略的 pose,再用 refine 網(wǎng)絡(luò)不斷優(yōu)化, 并且在最后的全連接層前加了一個(gè)低維嵌入,迫使網(wǎng)絡(luò)學(xué)習(xí)把特征空間壓縮到更低維度。 此網(wǎng)絡(luò)后續(xù)有更優(yōu)化的版本 DeepPrior++。

網(wǎng)絡(luò)在預(yù)測(cè) pose 之后,反過(guò)來(lái)用 pose 生成深度圖,并與輸入的深度圖一起預(yù)測(cè)更優(yōu)的 pose,此 pose 又可用來(lái)生成更優(yōu)的深度圖,以此迭代循環(huán)優(yōu)化pose。3D CNN:網(wǎng)絡(luò)結(jié)構(gòu)如下圖,此網(wǎng)絡(luò)把2D深度圖上用像素的描述的深度信息,以TSDF的方式轉(zhuǎn)化為體素(3D的像素),并用3D 卷積代替了普通的2D卷積。

此處最大的貢獻(xiàn)就是在網(wǎng)絡(luò)結(jié)構(gòu)上從2D走到了3D,因?yàn)閭鹘y(tǒng)2D卷積網(wǎng)絡(luò)是為2D圖像設(shè)計(jì)的,并不一定適合3D信息的提取,而用3D卷積網(wǎng)絡(luò)則更容易獲取3D特征,也就更適用于3D手部關(guān)鍵點(diǎn)回歸的問(wèn)題。HandPointNet:網(wǎng)絡(luò)輸入時(shí)把深度圖轉(zhuǎn)成點(diǎn)云,然后用 PointNet 做手部 3D 關(guān)鍵點(diǎn)回歸。

HandPointNet的主要貢獻(xiàn)是首次把PointNet用在了手勢(shì)關(guān)鍵點(diǎn)回歸上,其中的PointNet是很有代表性的網(wǎng)絡(luò)。PointNet 首次用 3D 點(diǎn)云來(lái)作為網(wǎng)絡(luò)輸入而不是 2D 圖片。PointNet 比上一個(gè)介紹的 3DCNN 更進(jìn)一步探索了在 3D 空間中的神經(jīng)網(wǎng)絡(luò)架構(gòu),以及如何更有效的提取 3D 特征,PointNet后續(xù)有更優(yōu)化的版本PointNet++。
? ? ?

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動(dòng)電源

在工業(yè)自動(dòng)化蓬勃發(fā)展的當(dāng)下,工業(yè)電機(jī)作為核心動(dòng)力設(shè)備,其驅(qū)動(dòng)電源的性能直接關(guān)系到整個(gè)系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動(dòng)勢(shì)抑制與過(guò)流保護(hù)是驅(qū)動(dòng)電源設(shè)計(jì)中至關(guān)重要的兩個(gè)環(huán)節(jié),集成化方案的設(shè)計(jì)成為提升電機(jī)驅(qū)動(dòng)性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機(jī) 驅(qū)動(dòng)電源

LED 驅(qū)動(dòng)電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個(gè)照明設(shè)備的使用壽命。然而,在實(shí)際應(yīng)用中,LED 驅(qū)動(dòng)電源易損壞的問(wèn)題卻十分常見,不僅增加了維護(hù)成本,還影響了用戶體驗(yàn)。要解決這一問(wèn)題,需從設(shè)計(jì)、生...

關(guān)鍵字: 驅(qū)動(dòng)電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動(dòng)電源的公式,電感內(nèi)電流波動(dòng)大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計(jì) 驅(qū)動(dòng)電源

電動(dòng)汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動(dòng)汽車的核心技術(shù)之一是電機(jī)驅(qū)動(dòng)控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機(jī)驅(qū)動(dòng)系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動(dòng)汽車的動(dòng)力性能和...

關(guān)鍵字: 電動(dòng)汽車 新能源 驅(qū)動(dòng)電源

在現(xiàn)代城市建設(shè)中,街道及停車場(chǎng)照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進(jìn)步,高亮度白光發(fā)光二極管(LED)因其獨(dú)特的優(yōu)勢(shì)逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動(dòng)電源 LED

LED通用照明設(shè)計(jì)工程師會(huì)遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動(dòng)電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動(dòng)電源的電磁干擾(EMI)問(wèn)題成為了一個(gè)不可忽視的挑戰(zhàn)。電磁干擾不僅會(huì)影響LED燈具的正常工作,還可能對(duì)周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來(lái)解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動(dòng)電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機(jī)重量也有所下降,所以,現(xiàn)在的LED驅(qū)動(dòng)電源

關(guān)鍵字: LED 驅(qū)動(dòng)電源 開關(guān)電源

LED驅(qū)動(dòng)電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動(dòng)LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動(dòng)電源
關(guān)閉