日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當(dāng)前位置:首頁 > 智能硬件 > 人工智能AI
[導(dǎo)讀] 1492年哥倫布從西班牙巴羅斯港出發(fā),一路西行發(fā)現(xiàn)了美洲。葡萄牙人達(dá)伽馬南下非洲,繞過好望角到達(dá)了印度。不久之后,麥哲倫用了整整三年時(shí)間,完成了人類史上第一次環(huán)球航行,開啟了人類歷史上的大航海時(shí)

1492年哥倫布從西班牙巴羅斯港出發(fā),一路西行發(fā)現(xiàn)了美洲。葡萄牙人達(dá)伽馬南下非洲,繞過好望角到達(dá)了印度。不久之后,麥哲倫用了整整三年時(shí)間,完成了人類史上第一次環(huán)球航行,開啟了人類歷史上的大航海時(shí)代。大航海時(shí)代的到來,拉近了人類社會(huì)各文明之間的距離,對(duì)人類社會(huì)產(chǎn)生了深遠(yuǎn)的影響。

人工智能進(jìn)入“大航海時(shí)代”

從深藍(lán)到Alpha?Go,人工智能逐漸走進(jìn)人們的生活。人工智能也從一場技術(shù)革命,逐漸走向了產(chǎn)業(yè)落地。智能手機(jī)、智能家居設(shè)備、智能音箱……等設(shè)備,已經(jīng)完全進(jìn)入到人們的生活中。指紋識(shí)別、人臉識(shí)別、畫面增強(qiáng)等實(shí)用人工智能的技術(shù),也成為了人們?nèi)粘J褂秒娮釉O(shè)備必不可少的技術(shù)。

這些在我們?nèi)粘I钪小耙姽植还帧钡娜斯ぶ悄芗夹g(shù)越來越普遍,代表了人工智能產(chǎn)業(yè)在近年來的爆炸式發(fā)展,2018年更是被稱為人工智能技術(shù)規(guī)模應(yīng)用的拐點(diǎn)。而作為人工智能技術(shù)的核心,人工智能芯片也備受關(guān)注,引得國內(nèi)外科技巨頭紛紛布局。谷歌、蘋果、微軟、Facebook、英特爾、高通、英偉達(dá)、AMD、阿里巴巴等巨頭紛紛開始自主研發(fā)人工智能芯片。

國產(chǎn)寒武紀(jì)芯片

并且人工智能芯片的應(yīng)用場景細(xì)分市場越來越多,專門為某些人工智能應(yīng)用場景定制的芯片適用性明顯高于通用芯片。這樣的形勢(shì),給一些人工智能芯片的初創(chuàng)公司帶來了機(jī)會(huì)。寒武紀(jì)芯片和地平線的人工智能視覺芯片、自動(dòng)駕駛芯片等,就是初創(chuàng)公司在人工智能芯片領(lǐng)域取得成功的代表。

人工智能芯片大火的同時(shí),已經(jīng)呈現(xiàn)出三分天下的態(tài)勢(shì)。FPGA、GPU和TPU芯片,已經(jīng)在人工智能領(lǐng)域大規(guī)模應(yīng)用。這三種人工智能芯片有何不同?人工智能企業(yè)又是怎樣看待這三種芯片的?下文將為您詳述。

FPGA并不是新鮮的事物,而因?yàn)?u>AI的火熱的應(yīng)用需求不斷增強(qiáng),F(xiàn)PGA正是作為一種AI芯片呈現(xiàn)在人們的面前。準(zhǔn)確的說,不僅僅是芯片,因?yàn)樗軌蛲ㄟ^軟件的方式定義,所以,更像是AI芯片領(lǐng)域的變形金剛。

FPGA是現(xiàn)場可編程邏輯陣列的首字母縮寫,即Field-Programmable?Gate?Array。過去曾與可編程邏輯器件CPLD進(jìn)行過較量,如今已經(jīng)在PAL、GAL、CPLD等可程式邏輯裝置的基礎(chǔ)上進(jìn)一步發(fā)展,成為英特爾進(jìn)軍AI市場的一個(gè)重要法寶。

全球FPGA市場的年均增長率會(huì)達(dá)到7%(圖片來自:gartner.com)

為了更好地了解FPGA和其對(duì)AI芯片的未來看法,ZOL企業(yè)站對(duì)英特爾可編程解決方案事業(yè)部亞太區(qū)市場拓展經(jīng)理劉斌(Robin?Liu)進(jìn)行了書面采訪。面對(duì)目前市場上出現(xiàn)的,CPU、GPU、FPGA、TPU等多種技術(shù)處理方式,英特爾又有哪些判斷。

FPGA三大特點(diǎn)

劉斌表示:“實(shí)際上今天絕大多數(shù)人工智能系統(tǒng)是部署在通用處理器上的,原因是在很多應(yīng)用領(lǐng)域中人工智能部分只是完成某個(gè)環(huán)節(jié)的系統(tǒng)任務(wù),還有大量其它任務(wù)一起構(gòu)成系統(tǒng)處理的完整單元。”在此基礎(chǔ)上,出現(xiàn)了很多種選項(xiàng),比如FPGA、TPU2或者NNP等專用處理器。這種專用處理器,往往向深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)領(lǐng)域延伸,擁有更高效的存儲(chǔ)器訪問調(diào)度結(jié)構(gòu)。

FPGA具有很強(qiáng)的靈活性(圖片來自:ruggedpcreview.com)

FPGA被稱為大型數(shù)據(jù)中心和計(jì)算機(jī)群眾的“加速多面手”也有其技術(shù)生態(tài)背景。FPGA的開發(fā)社區(qū)規(guī)模相對(duì)較小,也具有一定的門檻,但是,F(xiàn)PGA具備良好的存儲(chǔ)器訪問能力,并且可以非常靈活高效的處理各種不同位寬的數(shù)據(jù)類型,其有效計(jì)算力接近專用處理器的水平,F(xiàn)PGA還可以在線重編程成為其它非人工智能任務(wù)的硬件加速器,這也是其有別于GPU和TPU的關(guān)鍵因素。

具體而言有三大特點(diǎn):FPGA器件家族的廣泛覆蓋可以適配從云到端的應(yīng)用需求;FPGA具有處理時(shí)延小并且時(shí)延可控的特點(diǎn),更適合某些實(shí)時(shí)性要求高的業(yè)務(wù)場景;FPGA可以靈活處理不同的數(shù)據(jù)位寬,使得系統(tǒng)可以在計(jì)算精度、計(jì)算力、成本和功耗上進(jìn)行折衷和優(yōu)化,更適合某些制約因素非常嚴(yán)格的工程化應(yīng)用。相比于ASIC則FPGA更加靈活,可以適配的市場領(lǐng)域更加廣泛。

自定義功能芯片

以微軟為例,在微軟必應(yīng)搜索業(yè)務(wù)和Azure云計(jì)算服務(wù)中,均應(yīng)用了英特爾FPGA技術(shù),在其發(fā)布的“腦波項(xiàng)目”(Project?Brainwave)中特別闡述了英特爾FPGA技術(shù)如何幫助Azure云和必應(yīng)搜索取得“實(shí)時(shí)人工智能”(real-time?AI)的效果。

英特爾?FPGA?支持必應(yīng)快速處理網(wǎng)頁中的數(shù)百萬篇文章,從而為您提供基于上下文的答案。借助機(jī)器學(xué)習(xí)和閱讀理解,必應(yīng)?現(xiàn)在可提供智能答案,幫助用戶更快速找到所需答案,而非手動(dòng)點(diǎn)擊各個(gè)鏈接結(jié)果。在微軟腦波計(jì)劃中,同樣選擇了英特爾現(xiàn)場可編程門陣列的計(jì)算芯片,以具有競爭力的成本和業(yè)界最低延遲進(jìn)行人工智能計(jì)算。

如果說在AI芯片領(lǐng)域各家有各家的拿手絕學(xué),那么身為“變形金剛”FPGA的拿手絕學(xué)就是自定義功能了。作為特殊應(yīng)用積體電路領(lǐng)域中的一種半定制電路的FPGA,既解決了全定制電路的不足,又克服了原有可編程邏輯器件門電路數(shù)有限的缺點(diǎn)。也就是說,盡管FPGA不是輻射范圍最廣的,但是一旦匹配后,輸出驚人,所以也是良好的芯片選擇。

不止FPGA

隨著人工智能的發(fā)展,芯片的設(shè)計(jì)不僅要能夠滿足人工智能對(duì)計(jì)算力的需求,還要能夠適應(yīng)不斷變化的產(chǎn)業(yè)需要。在不同的應(yīng)用領(lǐng)域和不同的位置,前端還是數(shù)據(jù)中心,甚至邊緣計(jì)算等應(yīng)用場景。劉斌表示:一種芯片是沒辦法解決所有問題的。從移動(dòng)設(shè)備,到服務(wù)器,再到云服務(wù)、機(jī)器學(xué)習(xí)和人工智能的加速,需要不同種類的技術(shù)支持,需要能夠支持從毫瓦級(jí)到千瓦級(jí)的多種架構(gòu)。

在英特爾人工智能領(lǐng)域,除了FPGA之外,還提供了ASIC方案下的NNP神經(jīng)網(wǎng)絡(luò)計(jì)算加速器、Movidius專注前端智能攝像頭領(lǐng)域和Mobieye加速芯片,在無人車領(lǐng)域做視覺相關(guān)的物體、道路、異常情況的監(jiān)測。

過去30多年,摩爾定律幾乎每年都會(huì)推動(dòng)微處理器的性能提升50%,而半導(dǎo)體的物理學(xué)限制卻讓其放慢了腳步。如今,CPU的性能每年只能提升10%左右。事實(shí)上,英偉達(dá)CEO黃仁勛在每年的GTC上都會(huì)提到同一件事——摩爾定律失靈了。也就是說,人們要獲得更強(qiáng)的計(jì)算力,需要花費(fèi)更多的成本。與此同時(shí),GPU的崛起速度令人咂舌,看看英偉達(dá)近兩年的股價(jià)就知道了。

隨著人工智能、深度學(xué)習(xí)等技術(shù)的興起與成熟,起初為圖像渲染而生的GPU找到了新的用武之地,以GPU驅(qū)動(dòng)的計(jì)算環(huán)境隨處可見,從HPC到AI訓(xùn)練。站在數(shù)字世界、高性能計(jì)算、人工智能的交叉口,GPU悄然成為了計(jì)算機(jī)的大腦。將性能從10倍提升至100倍,GPU的加速能力遠(yuǎn)超以X86架構(gòu)構(gòu)建的CPU系統(tǒng),將時(shí)間壓縮至分鐘級(jí)別,功耗也相對(duì)較低。

2006年,借助CUDA(Compute?Unified?Device?Architecture,通用計(jì)算架構(gòu))和Tesla?GPU平臺(tái),英偉達(dá)將通用型計(jì)算帶入了GPU并行處理時(shí)代,這也為其在HPC領(lǐng)域的應(yīng)用奠定了基礎(chǔ)。作為并行處理器,GPU擅長處理大量相似的數(shù)據(jù),可以將任務(wù)分解為數(shù)百或數(shù)千塊同時(shí)處理,而傳統(tǒng)CPU則是為串行任務(wù)所設(shè)計(jì),在X86架構(gòu)下進(jìn)行多核編程是很困難的,并且從單核到四核、再到16核有時(shí)會(huì)導(dǎo)致邊際性能增益。同時(shí),內(nèi)存帶寬也會(huì)成為進(jìn)一步提高性能的瓶頸。

與以往的通用算法相比,深度學(xué)習(xí)對(duì)計(jì)算性能的要求則到了另一個(gè)量級(jí)上。盡管在GPU中運(yùn)行并行核心時(shí)處理的應(yīng)用數(shù)量相同,但在系統(tǒng)中單個(gè)內(nèi)核的使用效率卻更高。此外,經(jīng)過重寫的并行函數(shù)在應(yīng)用程序關(guān)鍵部分運(yùn)行時(shí),在GPU上跑的速度更快。

更重要的是,英偉達(dá)在利用GPU構(gòu)建訓(xùn)練環(huán)境時(shí)還考慮到了生態(tài)的重要性,這也是一直以來困擾人工智能發(fā)展的難題。首先,英偉達(dá)的NVIDIA?GPU?Cloud上線了AWS、阿里云等云平臺(tái),觸及到了更多云平臺(tái)上的開發(fā)者,預(yù)集成的高性能AI容器包括TensorFlow、PyTorch、MXNet等主流DL框架,降低了開發(fā)門檻、確保了多平臺(tái)的兼容性。

其次,英偉達(dá)也與研究機(jī)構(gòu)、大學(xué)院校,以及向Facebook、YouTube這樣的科技巨頭合作,部署GPU服務(wù)器的數(shù)據(jù)中心。同時(shí),還為全球數(shù)千家創(chuàng)業(yè)公司推出了IncepTIon項(xiàng)目,除了提供技術(shù)和營銷的支持,還會(huì)幫助這些公司在進(jìn)入不同國家或地區(qū)的市場時(shí),尋找潛在的投資機(jī)會(huì)。

可以說,英偉達(dá)之于GPU領(lǐng)域的成功除了歸功于Tesla加速器、NVIDIA?DGX、NVIDIA?HGX-2這些專屬的工作站或云服務(wù)器平臺(tái),更依托于構(gòu)建了完整的產(chǎn)業(yè)鏈通路,讓新技術(shù)和產(chǎn)品有的放矢,從而形成了自己的生態(tài)圈,這也是英特爾難以去打破的。

在不久前舉行的谷歌I/O?2018開發(fā)者大會(huì)上,TPU3.0正式亮相。根據(jù)官方介紹,TPU3.0的計(jì)算能力最高可達(dá)100PFlops,是TPU2.0的8倍多。TPU的英文全名是Tensor?Processor?Unit,它是谷歌自主研發(fā)的針對(duì)深度學(xué)習(xí)加速的專用人工智能芯片。TPU是專為谷歌深度學(xué)習(xí)框架TensorFlow設(shè)計(jì)的人工智能芯片。著名的AlphaGo使用的就是TPU2.0芯片。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動(dòng)電源

在工業(yè)自動(dòng)化蓬勃發(fā)展的當(dāng)下,工業(yè)電機(jī)作為核心動(dòng)力設(shè)備,其驅(qū)動(dòng)電源的性能直接關(guān)系到整個(gè)系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動(dòng)勢(shì)抑制與過流保護(hù)是驅(qū)動(dòng)電源設(shè)計(jì)中至關(guān)重要的兩個(gè)環(huán)節(jié),集成化方案的設(shè)計(jì)成為提升電機(jī)驅(qū)動(dòng)性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機(jī) 驅(qū)動(dòng)電源

LED 驅(qū)動(dòng)電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個(gè)照明設(shè)備的使用壽命。然而,在實(shí)際應(yīng)用中,LED 驅(qū)動(dòng)電源易損壞的問題卻十分常見,不僅增加了維護(hù)成本,還影響了用戶體驗(yàn)。要解決這一問題,需從設(shè)計(jì)、生...

關(guān)鍵字: 驅(qū)動(dòng)電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動(dòng)電源的公式,電感內(nèi)電流波動(dòng)大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計(jì) 驅(qū)動(dòng)電源

電動(dòng)汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動(dòng)汽車的核心技術(shù)之一是電機(jī)驅(qū)動(dòng)控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機(jī)驅(qū)動(dòng)系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動(dòng)汽車的動(dòng)力性能和...

關(guān)鍵字: 電動(dòng)汽車 新能源 驅(qū)動(dòng)電源

在現(xiàn)代城市建設(shè)中,街道及停車場照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進(jìn)步,高亮度白光發(fā)光二極管(LED)因其獨(dú)特的優(yōu)勢(shì)逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動(dòng)電源 LED

LED通用照明設(shè)計(jì)工程師會(huì)遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動(dòng)電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動(dòng)電源的電磁干擾(EMI)問題成為了一個(gè)不可忽視的挑戰(zhàn)。電磁干擾不僅會(huì)影響LED燈具的正常工作,還可能對(duì)周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動(dòng)電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機(jī)重量也有所下降,所以,現(xiàn)在的LED驅(qū)動(dòng)電源

關(guān)鍵字: LED 驅(qū)動(dòng)電源 開關(guān)電源

LED驅(qū)動(dòng)電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動(dòng)LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動(dòng)電源
關(guān)閉