日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當前位置:首頁 > 智能硬件 > 機器人
[導讀] January 17, 2014 06:26pm ETYour Robot Helper is On The Way Now It Can Learn From Its Friends &n

January 17, 2014 06:26pm ETYour Robot Helper is On The Way Now It Can Learn From Its Friends
 

I’ll be right with you sir, just after I put this cup away. This is a cup, right? Credit: garrettc. View full size image

This arTIcle was originally published at The ConversaTIon. The publicaTIon contributed the arTIcle to LiveScience's Expert Voices: Op-Ed & Insights.

January is a time when many of us seek to better ourselves. We want to learn a new skill or improve an existing one. A network designed especially for robots, RoboEarth, is being tested in the Netherlands to help them with their attempts at self-improvement. Soon our mechanical friends will be able to swap tips on how to best care for us and learn about their worlds.

As demonstrated by Google’s recent purchase of robotics companies and Amazon’s automated warehouses, intelligent, autonomous service robots are starting to look commercially viable.

Service robots are machines which can perform tasks with or for humans in normal environments (rather than in controlled factory settings). Intelligent, autonomous service robots have some freedom about how they complete tasks and need to make decisions about how to act based on what they know and can sense.

There are robots that can make sandwiches, find objects in your home, do your washing and even assemble Ikea furniture.

Easy on the mayo, please. Sandwich-making robots

Learning from scratch every time

When building systems such as these, one of the major bottlenecks is providing the robot with the knowledge about the world it needs in order to perform its task. This knowledge is usually centred around the objects involved in a task: what they look like, how they can be picked up or where they can be found. Knowledge about space (maps of buildings and rooms) and action (how to change the world to achieve a particular end) is usually essential too.

But robots have no built-in knowledge about these kinds of things. Everything they need to know must be engineered into their software somehow, such as by using machine learning techniques then connecting the results of this training to symbols within the robot’s software to allow it to refer to the things in the world.

This knowledge engineering typically takes a huge amount of time for even a simple task and is usually limited in that the robot only ends up knowing about exactly the things you’ve taught it. For example, it might be able to recognise a box of Cornflakes, but not a box of Frosties, or perhaps not even a box of Cornflakes with different packaging.

This means that it is very difficult to just send a robot into a new environment, or ask it to perform a new task, without having a team of experts on hand to do this training. No-one can afford to ship a computer science PhD graduate with every robot so researchers around the world are looking at how robots can be equipped to quickly learn about a new environment when they are put in one.

Learning from robot friends

RoboEarth – a collaboration between universities and Philips – has developed an approach to this based on the ability to share knowledge over the internet.

The system has been likened to a social network or a Wikipedia for robots as it allows the knowledge created for one robot to be shared with another robot, anywhere else in the world, via a shared, web-accessible database. When one robot in Germany learns what a toaster is and how it works, it can upload that information into the network. A robot in Japan which has never used a toaster before can then log in and learn how to recognise one.

To enable robots with different bodies and sensors to learn from each other, RoboEarth has an abstraction layer which allows shared information to assume common capabilities across all platforms. This is much like how a desktop operating system like Windows allows the same software to run on many different types of computers.

To allow robots to easily find the knowledge they require, the contents of the RoboEarth database are structured via an ontology. This describes each entry using logic which can be queried automatically and relates connected entries. So an oven will be listed as a type of household appliance and a mars bar as a type of food.

The RoboEarth demonstration is just the start of what will become an increasing trend of intelligent, autonomous machines sharing knowledge over the internet. While there are limitations to the current demonstrators, in terms of how well shared knowledge transfers across different systems and environments, we can expect this field to progress as robots begin to hit the market. The commercial need for robots to be able to learn from their peers will drive progress.

In the future it is easy to imagine both the current open protocols of RoboEarth educating robots worldwide, as well as a commercial alternative, like an app store, where robots and their owners can buy professionally engineered knowledge off the shelf. This will be a significant step towards the day when your morning orange juice or coffee will be brought by a robot helper, or at least a step towards helping it to tell the difference between the two.

Nick Hawes receives funding from the European Commission and EPSRC. He is affiliated with the University of Birmingham.

This article was originally published at The Conversation. Read the original article. The views expressed are those of the author and do not necessarily reflect the views of the publisher. This version of the article was originally published on LiveScience.

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內容真實性等。需要轉載請聯系該專欄作者,如若文章內容侵犯您的權益,請及時聯系本站刪除。
換一批
延伸閱讀

LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: 驅動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設備,其驅動電源的性能直接關系到整個系統的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅動電源設計中至關重要的兩個環(huán)節(jié),集成化方案的設計成為提升電機驅動性能的關鍵。

關鍵字: 工業(yè)電機 驅動電源

LED 驅動電源作為 LED 照明系統的 “心臟”,其穩(wěn)定性直接決定了整個照明設備的使用壽命。然而,在實際應用中,LED 驅動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設計、生...

關鍵字: 驅動電源 照明系統 散熱

根據LED驅動電源的公式,電感內電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關鍵字: LED 設計 驅動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產業(yè)的重要發(fā)展方向。電動汽車的核心技術之一是電機驅動控制系統,而絕緣柵雙極型晶體管(IGBT)作為電機驅動系統中的關鍵元件,其性能直接影響到電動汽車的動力性能和...

關鍵字: 電動汽車 新能源 驅動電源

在現代城市建設中,街道及停車場照明作為基礎設施的重要組成部分,其質量和效率直接關系到城市的公共安全、居民生活質量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統光源,成為大功率區(qū)域...

關鍵字: 發(fā)光二極管 驅動電源 LED

LED通用照明設計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數校正(PFC)、空間受限和可靠性等。

關鍵字: LED 驅動電源 功率因數校正

在LED照明技術日益普及的今天,LED驅動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設備造成不利影響,甚至引發(fā)系統故障。因此,采取有效的硬件措施來解決L...

關鍵字: LED照明技術 電磁干擾 驅動電源

開關電源具有效率高的特性,而且開關電源的變壓器體積比串聯穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現在的LED驅動電源

關鍵字: LED 驅動電源 開關電源

LED驅動電源是把電源供應轉換為特定的電壓電流以驅動LED發(fā)光的電壓轉換器,通常情況下:LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: LED 隧道燈 驅動電源
關閉