日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當前位置:首頁 > 智能硬件 > 人工智能AI
[導讀]   我們可以對神經(jīng)網(wǎng)絡架構(gòu)進行優(yōu)化,使之適配微控制器的內(nèi)存和計算限制范圍,并且不會影響精度。我們將在本文中解釋和探討深度可分離卷積神經(jīng)網(wǎng)絡在 Cortex-M 處理器上實現(xiàn)關(guān)鍵詞識別的潛力。

  我們可以對神經(jīng)網(wǎng)絡架構(gòu)進行優(yōu)化,使之適配微控制器的內(nèi)存和計算限制范圍,并且不會影響精度。我們將在本文中解釋和探討深度可分離卷積神經(jīng)網(wǎng)絡在 Cortex-M 處理器上實現(xiàn)關(guān)鍵詞識別的潛力。

  

  關(guān)鍵詞識別 (KWS) 對于在智能設備上實現(xiàn)基于語音的用戶交互十分關(guān)鍵,需要實時響應和高精度,才能確保良好的用戶體驗。最近,神經(jīng)網(wǎng)絡已經(jīng)成為 KWS 架構(gòu)的熱門選擇,因為與傳統(tǒng)的語音處理算法相比,神經(jīng)網(wǎng)絡的精度更勝一籌。

  

  關(guān)鍵詞識別神經(jīng)網(wǎng)絡管道

  由于要保持“永遠在線”,KWS 應用的功耗預算受到很大限制。雖然 KWS 應用也可在專用 DSP 或高性能 CPU 上運行,但更適合在 Arm Cortex-M 微控制器上運行,有助于最大限度地降低成本,Arm Cortex-M 微控制器經(jīng)常在物聯(lián)網(wǎng)邊緣用于處理其他任務。

  但是,要在基于 Cortex-M 的微控制器上部署基于神經(jīng)網(wǎng)絡的 KWS,我們面臨著以下挑戰(zhàn):

  1. 有限的內(nèi)存空間

  典型的 Cortex-M 系統(tǒng)最多提供幾百 KB 的可用內(nèi)存。這意味著,整個神經(jīng)網(wǎng)絡模型,包括輸入/輸出、權(quán)重和激活,都必須在這個很小的內(nèi)存范圍內(nèi)運行。

  2. 有限的計算資源

  由于 KWS 要保持永遠在線,這種實時性要求限制了每次神經(jīng)網(wǎng)絡推理的總運算數(shù)量。

  以下是適用于 KWS 推理的典型神經(jīng)網(wǎng)絡架構(gòu):

  • 深度神經(jīng)網(wǎng)絡 (DNN)

  DNN 是標準的前饋神經(jīng)網(wǎng)絡,由全連接層和非線性激活層堆疊而成。

  • 卷積神經(jīng)網(wǎng)絡 (CNN)

  基于 DNN 的 KWS 的一大主要缺陷是無法為語音功能中的局域關(guān)聯(lián)性、時域關(guān)聯(lián)性、頻域關(guān)聯(lián)性建模。CNN 則可將輸入時域和頻域特征當作圖像處理,并且在上面執(zhí)行 2D 卷積運算,從而發(fā)現(xiàn)這種關(guān)聯(lián)性。

  • 循環(huán)神經(jīng)網(wǎng)絡 (RNN)

  RNN 在很多序列建模任務中都展現(xiàn)出了出色的性能,特別是在語音識別、語言建模和翻譯中。RNN 不僅能夠發(fā)現(xiàn)輸入信號之間的時域關(guān)系,還能使用“門控”機制來捕捉長時依賴關(guān)系。

  • 卷積循環(huán)神經(jīng)網(wǎng)絡 (CRNN)

  卷積循環(huán)神經(jīng)網(wǎng)絡是 CNN 和 RNN 的混合,可發(fā)現(xiàn)局部時間/空間關(guān)聯(lián)性。CRNN 模型從卷積層開始,然后是 RNN,對信號進行編碼,接下來是密集全連接層。

  • 深度可分離卷積神經(jīng)網(wǎng)絡 (DS-CNN)

  最近,深度可分離卷積神經(jīng)網(wǎng)絡被推薦為標準 3D 卷積運算的高效替代方案,并已用于實現(xiàn)計算機視覺的緊湊網(wǎng)絡架構(gòu)。

  DS-CNN 首先使用獨立的 2D 濾波,對輸入特征圖中的每個通道進行卷積計算,然后使用點態(tài)卷積(即 1x1),合并縱深維度中的輸出。通過將標準 3D 卷積分解為 2D和后續(xù)的 1D,參數(shù)和運算的數(shù)量得以減少,從而使得更深和更寬的架構(gòu)成為可能,甚至在資源受限的微控制器器件中也能運行。

  在 Cortex-M 處理器上運行關(guān)鍵詞識別時,內(nèi)存占用和執(zhí)行時間是兩個最重要因素,在設計和優(yōu)化用于該用途的神經(jīng)網(wǎng)絡時,應該考慮到這兩大因素。以下所示的神經(jīng)網(wǎng)絡的三組限制分別針對小型、中型和大型 Cortex-M 系統(tǒng),基于典型的 Cortex-M 系統(tǒng)配置。

  

  KWS 模型的神經(jīng)網(wǎng)絡類別 (NN) 類別,假定每秒 10 次推理和 8 位權(quán)重/激活

  要調(diào)節(jié)模型,使之不超出微控制器的內(nèi)存和計算限制范圍,必須執(zhí)行超參數(shù)搜索。下表顯示了神經(jīng)網(wǎng)絡架構(gòu)及必須優(yōu)化的相應超參數(shù)。

  

  神經(jīng)網(wǎng)絡超參數(shù)搜索空間

  首先執(zhí)行特征提取和神經(jīng)網(wǎng)絡模型超參數(shù)的窮舉搜索,然后執(zhí)行手動選擇以縮小搜索空間,這兩者反復執(zhí)行。下圖總結(jié)了適用于每種神經(jīng)網(wǎng)絡架構(gòu)的最佳性能模型及相應的內(nèi)存要求和運算。DS-CNN 架構(gòu)提供最高的精度,而且需要的內(nèi)存和計算資源也低得多。

  

  最佳神經(jīng)網(wǎng)絡模型中內(nèi)存與運算/推理的關(guān)系

  KWS 應用部署在基于 Cortex-M7 的 STM32F746G-DISCO 開發(fā)板上(如下圖所示),使用包含 8 位權(quán)重和 8 位激活的 DNN 模型,KWS 在運行時每秒執(zhí)行 10 次推理。每次推理(包括內(nèi)存復制、MFCC 特征提取、DNN 執(zhí)行)花費大約 12 毫秒。為了節(jié)省功耗,可讓微控制器在余下時間處于等待中斷 (WFI) 模式。整個 KWS 應用占用大約 70 KB 內(nèi)存,包括大約 66 KB 用于權(quán)重、大約 1 KB 用于激活、大約 2 KB 用于音頻 I/O 和 MFCC 特征。

  

  Cortex-M7 開發(fā)板上的 KWS 部署

  總而言之,Arm Cortex-M 處理器可以在關(guān)鍵詞識別應用中達到很高的精度,同時通過調(diào)整網(wǎng)絡架構(gòu)來限制內(nèi)存和計算需求。DS-CNN 架構(gòu)提供最高的精度,而且需要的內(nèi)存和計算資源也低得多。

  代碼、模型定義和預訓練模型可從 github.com/ARM-software 獲取。

  我們?nèi)碌臋C器學習開發(fā)人員網(wǎng)站提供一站式資源庫、詳細產(chǎn)品信息和教程,幫助應對網(wǎng)絡邊緣的機器學習所面臨的挑戰(zhàn)。

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設備,其驅(qū)動電源的性能直接關(guān)系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅(qū)動電源設計中至關(guān)重要的兩個環(huán)節(jié),集成化方案的設計成為提升電機驅(qū)動性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機 驅(qū)動電源

LED 驅(qū)動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設備的使用壽命。然而,在實際應用中,LED 驅(qū)動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設計、生...

關(guān)鍵字: 驅(qū)動電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動電源的公式,電感內(nèi)電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設計 驅(qū)動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術(shù)之一是電機驅(qū)動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅(qū)動系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動汽車的動力性能和...

關(guān)鍵字: 電動汽車 新能源 驅(qū)動電源

在現(xiàn)代城市建設中,街道及停車場照明作為基礎(chǔ)設施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動電源 LED

LED通用照明設計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅(qū)動電源

關(guān)鍵字: LED 驅(qū)動電源 開關(guān)電源

LED驅(qū)動電源是把電源供應轉(zhuǎn)換為特定的電壓電流以驅(qū)動LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動電源
關(guān)閉