日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當前位置:首頁 > > strongerHuang
[導讀]標準三端線性穩(wěn)壓器的壓差通常是2.0-3.0V。要把5V可靠地轉換為3.3V,就不能使用它們。壓差為幾百個毫伏的低壓降穩(wěn)壓器,是此類應用的理想選擇。

來源:網(wǎng)絡


標準三端線性穩(wěn)壓器的壓差通常是 2.0-3.0V。要把 5V 可靠地轉換為 3.3V,就不能使用它們。壓差為幾百個毫伏的低壓降 (Low Dropout, LDO)穩(wěn)壓器,是此類應用的理想選擇。圖 1-1 是基本LDO 系統(tǒng)的框圖,標注了相應的電流。從圖中可以看出, LDO 由四個主要部分組成:

技巧一

使用LDO穩(wěn)壓器,從5V電源向3.3V系統(tǒng)供電


標準三端線性穩(wěn)壓器的壓差通常是 2.0-3.0V。要把 5V 可靠地轉換為 3.3V,就不能使用它們。壓差為幾百個毫伏的低壓降 (Low Dropout, LDO)穩(wěn)壓器,是此類應用的理想選擇。圖 1-1 是基本LDO 系統(tǒng)的框圖,標注了相應的電流。從圖中可以看出, LDO 由四個主要部分組成:


1. 導通晶體管
2. 帶隙參考源
3. 運算放大器
4. 反饋電阻分壓器

在選擇 LDO 時,重要的是要知道如何區(qū)分各種LDO。器件的靜態(tài)電流、封裝大小和型號是重要的器件參數(shù)。根據(jù)具體應用來確定各種參數(shù),將會得到最優(yōu)的設計。



LDO的靜態(tài)電流IQ是器件空載工作時器件的接地電流 IGND。IGND 是 LDO 用來進行穩(wěn)壓的電流。當IOUT>>IQ 時, LDO 的效率可用輸出電壓除以輸入電壓來近似地得到。然而,輕載時,必須將 IQ 計入效率計算中。具有較低 IQ 的 LDO 其輕載效率較高。輕載效率的提高對于 LDO 性能有負面影響。靜態(tài)電流較高的 LDO 對于線路和負載的突然變化有更快的響應。

技巧二

采用齊納二極管的低成本供電系統(tǒng)


這里詳細說明了一個采用齊納二極管的低成本穩(wěn)壓器方案。



可以用齊納二極管和電阻做成簡單的低成本 3.3V穩(wěn)壓器,如圖 2-1 所示。在很多應用中,該電路可以替代 LDO 穩(wěn)壓器并具成本效益。但是,這種穩(wěn)壓器對負載敏感的程度要高于 LDO 穩(wěn)壓器。另外,它的能效較低,因為 R1 和 D1 始終有功耗。R1 限制流入D1 和 PICmicro? MCU的電流,從而使VDD 保持在允許范圍內(nèi)。由于流經(jīng)齊納二極管的電流變化時,二極管的反向電壓也將發(fā)生改變,所以需要仔細考慮 R1 的值。

R1 的選擇依據(jù)是:在最大負載時——通常是在PICmicro MCU 運行且驅(qū)動其輸出為高電平時——R1上的電壓降要足夠低從而使PICmicro MCU有足以維持工作所需的電壓。同時,在最小負載時——通常是 PICmicro MCU 復位時——VDD 不超過齊納二極管的額定功率,也不超過 PICmicro MCU的最大 VDD。

技巧三

采用3個整流二極管的更低成本供電系統(tǒng)



技巧四

使用開關穩(wěn)壓器,從5V電源向3.3V系統(tǒng)供電


如圖 4-1 所示,降壓開關穩(wěn)壓器是一種基于電感的轉換器,用來把輸入電壓源降低至幅值較低的輸出電壓。輸出穩(wěn)壓是通過控制 MOSFET Q1 的導通(ON)時間來實現(xiàn)的。由于 MOSFET 要么處于低阻狀態(tài),要么處于高阻狀態(tài) (分別為 ON 和OFF),因此高輸入源電壓能夠高效率地轉換成較低的輸出電壓。

當 Q1 在這兩種狀態(tài)期間時,通過平衡電感的電壓- 時間,可以建立輸入和輸出電壓之間的關系。







數(shù)字連接



技巧五

3.3V →5V直接連接


將 3.3V 輸出連接到 5V 輸入最簡單、最理想的方法是直接連接。直接連接需要滿足以下 2 點要求:
? 3.3V輸出的 VOH 大于 5V 輸入的 VIH
? 3.3V輸出的 VOL 小于 5V 輸入的 VIL

能夠使用這種方法的例子之一是將 3.3V LVCMOS輸出連接到 5V TTL 輸入。從表 4-1 中所給出的值可以清楚地看到上述要求均滿足。


3.3V LVCMOS 的 VOH (3.0V)大于 5V TTL 的VIH (2.0V)且3.3V LVCMOS 的 VOL (0.5V)小于 5V TTL 的VIL (0.8V)。

如果這兩個要求得不到滿足,連接兩個部分時就需要額外的電路??赡艿慕鉀Q方案請參閱技巧 6、7、 8 和 13。

技巧六

3.3V→5V使用MOSFET轉換器



如果 5V 輸入的 VIH 比 3.3V CMOS 器件的 VOH 要高,則驅(qū)動任何這樣的 5V 輸入就需要額外的電路。圖 6-1 所示為低成本的雙元件解決方案。

在選擇 R1 的阻值時,需要考慮兩個參數(shù),即:輸入的開關速度和 R1 上的電流消耗。當把輸入從 0切換到 1 時,需要計入因 R1 形成的 RC 時間常數(shù)而導致的輸入上升時間、 5V 輸入的輸入容抗以及電路板上任何的雜散電容。輸入開關速度可通過下式計算:



技巧七

3.3V→5V使用二極管補償


表 7-1 列出了 5V CMOS 的輸入電壓閾值、 3.3VLVTTL 和 LVCMOS 的輸出驅(qū)動電壓。




技巧八

3.3V→5V使用電壓比較器


計算 R1 和 R2




技巧九

5V→3.3V直接連接



技巧十

5V→3.3V使用二極管鉗位


很多廠商都使用鉗位二極管來保護器件的 I/O 引腳,防止引腳上的電壓超過最大允許電壓規(guī)范。鉗位二極管使引腳上的電壓不會低于 Vss 超過一個二極管壓降,也不會高于 VDD 超過一個二極管壓降。要使用鉗位二極管來保護輸入,仍然要關注流經(jīng)鉗位二極管的電流。流經(jīng)鉗位二極管的電流應該始終比較小 (在微安數(shù)量級上)。如果流經(jīng)鉗位二極管的電流過大,就存在部件閉鎖的危險。由于5V 輸出的源電阻通常在 10Ω 左右,因此仍需串聯(lián)一個電阻,限制流經(jīng)鉗位二極管的電流,如圖 10-1所示。使用串聯(lián)電阻的后果是降低了輸入開關的速度,因為引腳 (CL)上構成了 RC 時間常數(shù)。



技巧十一

5V→3.3V有源鉗位



技巧十二

5V→3.3V電阻分壓器





例如,假設有下列條件存在:
? 雜散電容 = 30 pF
? 負載電容 = 5 pF
? 從 0.3V 至 3V 的最大上升時間 ≤ 1 μs
? 外加源電壓 Vs = 5V



技巧十三

3.3V→5V電平轉換器



模擬
3.3V 至 5V 接口的最后一項挑戰(zhàn)是如何轉換模擬信號,使之跨越電源障礙。低電平信號可能不需要外部電路,但在 3.3V 與 5V 之間傳送信號的系統(tǒng)則會受到電源變化的影響。例如,在 3.3V 系統(tǒng)中,ADC轉換1V峰值的模擬信號,其分辨率要比5V系統(tǒng)中 ADC 轉換的高,這是因為在 3.3V ADC 中,ADC 量程中更多的部分用于轉換。但另一方面,3.3V 系統(tǒng)中相對較高的信號幅值,與系統(tǒng)較低的共模電壓限制可能會發(fā)生沖突。

因此,為了補償上述差異,可能需要某種接口電路。本節(jié)將討論接口電路,以幫助緩和信號在不同電源之間轉換的問題。

技巧十四

3.3V→5V模擬增益模塊



技巧十五

3.3V→5V模擬補償模塊


該模塊用于補償 3.3V 轉換到 5V 的模擬電壓。下面是將 3.3V 電源供電的模擬電壓轉換為由 5V電源供電。右上方的 147 kΩ、 30.1 kΩ 電阻以及+5V 電源,等效于串聯(lián)了 25 kΩ 電阻的 0.85V 電壓源。這個等效的 25 kΩ 電阻、三個 25 kΩ 電阻以及運放構成了增益為 1 V/V 的差動放大器。0.85V等效電壓源將出現(xiàn)在輸入端的任何信號向上平移相同的幅度;以 3.3V/2 = 1.65V 為中心的信號將同時以 5.0V/2 = 2.50V 為中心。左上方的電阻限制了來自 5V 電路的電流。



技巧十六

5V→3.3V有源模擬衰減器


此技巧使用運算放大器衰減從 5V 至 3.3V 系統(tǒng)的信號幅值。


要將 5V 模擬信號轉換為 3.3V 模擬信號,最簡單的方法是使用 R1:R2 比值為 1.7:3.3 的電阻分壓器。然而,這種方法存在一些問題。

1)衰減器可能會接至容性負載,構成不期望得到的低通濾波器。
2)衰減器電路可能需要從高阻抗源驅(qū)動低阻抗負載。




技巧十七

5V→3.3V模擬限幅器





技巧十八

驅(qū)動雙極型晶體管





3V 技術示例:


技巧十九

驅(qū)動N溝道MOSFET晶體管


在選擇與 3.3V 單片機配合使用的外部 N 溝道MOSFET 時,一定要小心。MOSFET 柵極閾值電壓表明了器件完全飽和的能力。對于 3.3V 應用,所選 MOSFET 的額定導通電阻應針對 3V 或更小的柵極驅(qū)動電壓。例如,對于具有 3.3V 驅(qū)動的100 mA負載,額定漏極電流為250 μA的FET在柵極 - 源極施加 1V 電壓時,不一定能提供滿意的結果。在從 5V 轉換到 3V 技術時,應仔細檢查柵極- 源極閾值和導通電阻特性參數(shù),如圖 19-1 所示。稍微減少柵極驅(qū)動電壓,可以顯著減小漏電流。




推薦閱讀:

FILE、LINE等幾種C標準用法

su、sudo、sudo su、sudo -i使用和區(qū)別

百度網(wǎng)盤國際版 Dubox 干凈好用,卻與國內(nèi)用戶無緣


關注 微信公眾號『strongerHuang』,后臺回復“1024”查看更多內(nèi)容,回復“加群”按規(guī)則加入技術交流群。


長按前往圖中包含的公眾號關注

免責聲明:本文內(nèi)容由21ic獲得授權后發(fā)布,版權歸原作者所有,本平臺僅提供信息存儲服務。文章僅代表作者個人觀點,不代表本平臺立場,如有問題,請聯(lián)系我們,謝謝!

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: 驅(qū)動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設備,其驅(qū)動電源的性能直接關系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅(qū)動電源設計中至關重要的兩個環(huán)節(jié),集成化方案的設計成為提升電機驅(qū)動性能的關鍵。

關鍵字: 工業(yè)電機 驅(qū)動電源

LED 驅(qū)動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設備的使用壽命。然而,在實際應用中,LED 驅(qū)動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設計、生...

關鍵字: 驅(qū)動電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動電源的公式,電感內(nèi)電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關鍵字: LED 設計 驅(qū)動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術之一是電機驅(qū)動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅(qū)動系統(tǒng)中的關鍵元件,其性能直接影響到電動汽車的動力性能和...

關鍵字: 電動汽車 新能源 驅(qū)動電源

在現(xiàn)代城市建設中,街道及停車場照明作為基礎設施的重要組成部分,其質(zhì)量和效率直接關系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關鍵字: 發(fā)光二極管 驅(qū)動電源 LED

LED通用照明設計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關鍵字: LED 驅(qū)動電源 功率因數(shù)校正

在LED照明技術日益普及的今天,LED驅(qū)動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關鍵字: LED照明技術 電磁干擾 驅(qū)動電源

開關電源具有效率高的特性,而且開關電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅(qū)動電源

關鍵字: LED 驅(qū)動電源 開關電源

LED驅(qū)動電源是把電源供應轉換為特定的電壓電流以驅(qū)動LED發(fā)光的電壓轉換器,通常情況下:LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: LED 隧道燈 驅(qū)動電源
關閉