日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當前位置:首頁 > 電源 > 功率器件
[導讀]今天我們來聊了聊有關碳化硅作為高壓低損耗的功率半導體器件材料的潛力

今天我們來聊了聊有關碳化硅作為高壓低損耗的功率半導體器件材料的潛力

1

功率器件要求

功率半導體器件作為功率變換系統(tǒng)的核心器件,目前應用最多的仍舊是 IGBT,在很多時候還需要搭配合適的反向并聯(lián)二極管。任何情況下,功率器件都是在"導通"和"截止"兩個狀態(tài)之間切換,類似于集成電路中的邏輯器件,通過切換來達到電力轉換的需求,切換頻率一般在 1kHz~100kHz 的范圍內(nèi)。

在功率轉換系統(tǒng)中,比如說逆變電路,我們都希望開關器件的導通和截止狀態(tài)下都是理想的,即導通狀態(tài)下電壓為零;在截止狀態(tài)下,漏電流為零(擊穿電壓無限大)。這顯然是不可能的,實際的器件表現(xiàn)出有限的電阻和有限的漏電流(以及擊穿電壓存在最大值的限制),這也是導通損耗和關斷損耗的主要原因。另外,在開關的過程中的瞬態(tài)行為都會存在開關損耗。

下圖是開關器件以及二極管的理想狀態(tài)和實際狀態(tài)的對比圖:

現(xiàn)實與理想的差異,對于功率器件的主要要求包括:

?低導通電壓(低導通電阻)

?低漏電流

?能夠以最小的電流 / 電壓進行快速切換

這些與導通損耗、關斷損耗和開關損耗有著直接的關系。除此之外,

?較大的安全工作區(qū)域(魯棒性)和可靠性也是極為重要!

而在這些方面,SiC 表現(xiàn)出了巨大的發(fā)展?jié)摿Α?

2

電場強度、導通電阻

下圖是相同擊穿電壓下 SiC 和 Si 的單側突變結中的電場分布:

可見,SiC 的擊穿電場強度是 Si 的 10 倍左右,所以 SiC 功率器件中的電壓阻擋層的厚度可以是 Si 器件中的 1/10。并且其摻雜濃度也可以高出兩個數(shù)量級,因此在任何給定的阻斷電壓下,SiC 代替 Si 的單極器件中可以將漂移層的電阻降低 2~3 個數(shù)量級。

這一特點對于高壓場合顯得尤為重要,漂移層電阻 Rdrift 與阻斷電壓 VB 的(2~2.5,這個系數(shù)需要綜合考慮來確定)成比例,并且也是覺得器件總導通電阻 Ron 的主要因素。

沒有內(nèi)置電壓的功率器件的導通損耗 Pon,由 Ron*J2on 決定,其中 Jon 是導通電流密度(在額定電流下一般為 100~300A/cm2)。因此,SiC 器件極低的抗漂移性有助于降低導通損耗。

下圖是 Si 和 SiC 單極器件的最小導通電阻(漂移層電阻)相對于阻斷電壓的曲線:

最小導通電阻我們可以由下式得出:

Rdrift=4VB2/(ηεμEB3)

其中,ε、μ和 EB 分別是介電常數(shù)、遷移率和擊穿場強;η是室溫下?lián)诫s劑的電離率(“2 次方”是上文提到的系數(shù))。

在輕摻雜的 n 型 SiC 中,由于氮供體相對較淺,η約為 0.85~1.0。這對于寬帶隙半導體尤為重要,在寬帶隙半導體中經(jīng)常會觀察到摻雜劑的不完全電離,實際上,由于室溫下鋁受體的空穴遷移率較低并且離子化率小,所以 p 型 SiC 肖特基二極管和功率 MOS 無法與 Si 基競爭。

3

"快速"切換

SiC 功率器件的另一個重要特點就是快速切換,反向恢復小,能夠滿足更高的頻率。中高壓應用中,Si 基的雙極型器件通過少數(shù)載流子的注入,電導率調(diào)制能夠顯著的降低導通電阻。但是,雙極型器件存在少數(shù)載流子存儲的原因,導致開關速度較慢以及關斷操作中的反向恢復大。而,這些應用中,SiC 單極器件由于導通電阻很低并且不存在少數(shù)載流子存儲,可以成為較理想的選擇。SiC 雙極型器件也可以提供快速切換,因為電壓阻擋區(qū)的厚度薄了約 10 倍(上面提到過),與 Si 的雙極型器件相比,該區(qū)域中存儲的電荷相應地小了約 10 倍。

4

高結溫和工藝技術

由于帶隙寬和化學穩(wěn)定性,使用 SiC 器件的設備可以在高溫(>250℃)下運行,這一點在當下的應用中無疑十分吸引人,更高的溫度上限可以優(yōu)化散熱裝置,而 SiC 器件本身甚至可以在 500℃或更高的溫度下運行。

而封裝技術是 SiC 功率器件發(fā)展的另一個重要問題。

比如,由于摻雜劑在 SiC 中極小的擴散常數(shù),通過擴散工藝進行雜質摻雜很難實現(xiàn),所以一般通過外延生長或者離子注入來進行摻雜;

在 SiC 中,即使在高溫活化退火之后,高密度的深能級和擴展的缺陷仍保留在離子注入?yún)^(qū)以及注入尾部內(nèi),這導致注入結附近的載流子壽命很短(<0.1us),這不利于雙極型器件,所以有效的載流子注入和擴散是必不可少的。

所以,SiC 雙極型器件中的 pn 結僅通過外延生長來制造,但是對于制造 SBD 和 MOSFET 之類的 SiC 單極器件,由于其通過注入結可以獲得幾乎理想的擊穿特性,并且單極器件的正常工作中并不涉及載流子注入,所以離子注入比較有用。

(摻雜等可以查看之前的推送)

5

更高的電壓等級

下圖是 Si 基和 SiC 基的單極 / 雙極型功率器件的電壓等級分布:

對于 Si 基功率器件,單極和雙極器件的分界線在 300~600V,而在 SiC 功率器件中,這個邊界向后移動了大約 10 倍的阻斷電壓,即幾 kV。預計 SiC 將在 300V~6500V 的阻斷電壓范圍內(nèi)替代 Si 的雙極型器件,并且 SiC 的雙極型器件在 10kV 以上的超高壓應用中也是"魅"不可擋。

可見,SiC 的發(fā)展不僅在于其本身的特性,還在于外部因素的適配。當然,隨著時間的推移,這些都將會逐一解決!

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: 驅動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設備,其驅動電源的性能直接關系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅動電源設計中至關重要的兩個環(huán)節(jié),集成化方案的設計成為提升電機驅動性能的關鍵。

關鍵字: 工業(yè)電機 驅動電源

LED 驅動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設備的使用壽命。然而,在實際應用中,LED 驅動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設計、生...

關鍵字: 驅動電源 照明系統(tǒng) 散熱

根據(jù)LED驅動電源的公式,電感內(nèi)電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關鍵字: LED 設計 驅動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術之一是電機驅動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅動系統(tǒng)中的關鍵元件,其性能直接影響到電動汽車的動力性能和...

關鍵字: 電動汽車 新能源 驅動電源

在現(xiàn)代城市建設中,街道及停車場照明作為基礎設施的重要組成部分,其質量和效率直接關系到城市的公共安全、居民生活質量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關鍵字: 發(fā)光二極管 驅動電源 LED

LED通用照明設計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關鍵字: LED 驅動電源 功率因數(shù)校正

在LED照明技術日益普及的今天,LED驅動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關鍵字: LED照明技術 電磁干擾 驅動電源

開關電源具有效率高的特性,而且開關電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅動電源

關鍵字: LED 驅動電源 開關電源

LED驅動電源是把電源供應轉換為特定的電壓電流以驅動LED發(fā)光的電壓轉換器,通常情況下:LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: LED 隧道燈 驅動電源
關閉