日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當前位置:首頁 > 通信技術 > 世健
[導讀]圍繞如何處理小信號前端這一話題,近期引起了一波討論熱潮。技術型分銷商Excelpoint世健的FAE Wolfe Yu就小信號前端、確定測量范圍、抑制噪聲、提高信噪比等問題進行了介紹和分析。

前言

圍繞如何處理小信號前端這一話題,近期引起了一波討論熱潮。技術型分銷商Excelpoint世健的FAE Wolfe Yu就小信號前端、確定測量范圍、抑制噪聲、提高信噪比等問題進行了介紹和分析。

運算放大器結構探秘

部分工程師強調理想運放的增益無窮大,分析運放,首先注意虛斷和虛短,忽略了共模抑制比、失調電壓、偏置電流等一些較為重要的概念。

一、運放輸入模型

按照運放模型,比較全面的梳理出運放的基本模型:就是差模信號和共模信號的疊加。

差分運放和儀表放大器應用科普貼——模擬小信號前端處理探索

二、虛短概念

理想運放要注意虛斷和虛短。運放的同相端輸入和反相端輸入相等。

差分運放和儀表放大器應用科普貼——模擬小信號前端處理探索

理想運放開環(huán)增益無窮大,實際略小,大部分在100dB(100000)倍左右,按這個增益,要讓輸出變化3V,同相反相輸入端只需30uV的壓差即可,如果加上紋波、噪聲等干擾信號,同相反相端基本上無變化。引入反饋,做閉環(huán),同相反相端的電壓差忽略不計。

三、差模輸入和共模輸入

在應用中,運放可以輸入差模信號,也可以輸入共模信號,共模信號大部分來自噪聲,最核心的愿景是:共模被抵消,差模被放大。

差分運放和儀表放大器應用科普貼——模擬小信號前端處理探索

四、輸入電壓范圍(Vin或Vcm)

運算放大器輸入范圍比較復雜,理論上來講,同相端和反相端模擬輸入在電源的正軌到負軌之間都能滿足,運放的上下管大致對稱,大部分時間,取運放的共模輸入電壓Vcm為1/2 Vdd。這樣,運放主要工作在線性區(qū)。

差分運放和儀表放大器應用科普貼——模擬小信號前端處理探索

五、小信號檢測方法

運算放大器用來做電流小信號采集時,往往會面臨信號該如何采集、是采用高邊電流檢測還是采用低邊電流檢測的問題。

差分運放和儀表放大器應用科普貼——模擬小信號前端處理探索

差分放大器介紹

由于傳感器信號主要是通過施加電壓差做為輸出,信號的差值電壓很小,而且會產生布局布線引起的EMI和共模干擾、溫度漂移等問題。把運放的同相端和反相端當做車廂,只要傳感器信號給定在這中間,相對的干擾就會小很多。傳感器的信號存在壓差,避免運放異常飽和,引入差分放大器。

差分運放和儀表放大器應用科普貼——模擬小信號前端處理探索

基于成本考慮,行業(yè)之內,大部分設計還會采用普通運放,基于減法器的模型,搭建一個差動放大器。

差分運放和儀表放大器應用科普貼——模擬小信號前端處理探索

差分放大器的原理就像照鏡子,物理學上的說法稱作鏡像,講究對稱和平衡,只有做到兩邊一模一樣,效果才會最佳。為了這個目的,工程師就需要在模擬前端做阻抗匹配。而由于各點參考源不同,阻抗又有誤差,完全阻抗匹配往往非常困難。下圖是一個經典的差分運放,通過輸出靜默電壓Uoz,用KCL去求解同相輸入和反相輸入阻抗,結果差異很大。

差分運放和儀表放大器應用科普貼——模擬小信號前端處理探索

下面介紹一下確定上圖中各電阻的值的方法:

首先,按照鏡像原理,偏置電流也按照相同的倍數(shù)放大,即可求出4個電阻之間的關系;確定R1則需要查運放的幾個限制條件,阻值需滿足:大于瞬時輸出電壓/最大輸出電流、小于輸入失調電壓/輸入偏置電流,還要注意熱噪聲影響等等。

儀表放大器介紹

差分放大器能處理大部分模擬前端,但由于系統(tǒng)輸入阻抗有限,需要加入復雜的匹配電路。當外圍電阻精度和PCB線路阻抗,會產生新的問題。

為了解決差分運放輸入阻抗較低等問題,各大廠家做了很多優(yōu)化,有的就采用如下圖的雙運放方法來實現(xiàn)儀表放大。

差分運放和儀表放大器應用科普貼——模擬小信號前端處理探索

雙運放有兩個弱點:不支持單位增益、不同頻率的共模抑制比較差。于是眾多廠商采用三運放方法。不少大廠推出的儀表放大器,也都是基于三運放原理來實現(xiàn)的。

差分運放和儀表放大器應用科普貼——模擬小信號前端處理探索

Microchip運放解決方案

儀表放大器 MCP6N16-100

不同于眾多廠商推出的三運放儀表放大器方案,Microchip針對工業(yè)客戶應用提出了自己獨特的解決方案——間接電流反饋型儀表放大器,其內部結構如下圖所示:

差分運放和儀表放大器應用科普貼——模擬小信號前端處理探索

間接電流反饋型儀表放大器前級做跨導放大,實現(xiàn)V-I轉換,后級做跨阻放大I-V轉換。

差分運放和儀表放大器應用科普貼——模擬小信號前端處理探索

間接電流反饋型儀表放大器和三運放儀表放大器存在一些差別,主要優(yōu)勢:

在寬Vcm范圍內具有高CMRR(軌到軌)

工作區(qū)域廣(Vin和Vout)

適合低電壓應用

無“Hex”圖

高阻態(tài)Vref輸入

更好的增益溫度系數(shù)匹配

應用案例——惠斯通橋

差分運放和儀表放大器應用科普貼——模擬小信號前端處理探索

零漂移放大器 MCP6V61

另外,Microchip的零漂移放大器產品,主要針對較低成本應用,主要特點:

高直流精度

- VOS 漂移: ±15 nV/°C

- AOL: 125 dB

- PSRR: 117 dB

- CMRR: 120 dB

- (EMIRR) at 1.8 GHz: 101 dB

- 低功耗

- 靜態(tài)電流80uA

應用案例——RTD傳感器

差分運放和儀表放大器應用科普貼——模擬小信號前端處理探索

Wolfe表示,Microchip還推出了多款有特色的運放產品,比如低噪聲、高精度、全差分系列的MCP6D11、高邊電流檢測系列MCP6C04等。結合Excelpoint世健的技術支持等服務,可以幫助客戶提供一站式選型平臺,減少工作難度,盡快讓產品上市。

差分運放和儀表放大器應用科普貼——模擬小信號前端處理探索

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內容真實性等。需要轉載請聯(lián)系該專欄作者,如若文章內容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: 驅動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設備,其驅動電源的性能直接關系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅動電源設計中至關重要的兩個環(huán)節(jié),集成化方案的設計成為提升電機驅動性能的關鍵。

關鍵字: 工業(yè)電機 驅動電源

LED 驅動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設備的使用壽命。然而,在實際應用中,LED 驅動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設計、生...

關鍵字: 驅動電源 照明系統(tǒng) 散熱

根據(jù)LED驅動電源的公式,電感內電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關鍵字: LED 設計 驅動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產業(yè)的重要發(fā)展方向。電動汽車的核心技術之一是電機驅動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅動系統(tǒng)中的關鍵元件,其性能直接影響到電動汽車的動力性能和...

關鍵字: 電動汽車 新能源 驅動電源

在現(xiàn)代城市建設中,街道及停車場照明作為基礎設施的重要組成部分,其質量和效率直接關系到城市的公共安全、居民生活質量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關鍵字: 發(fā)光二極管 驅動電源 LED

LED通用照明設計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關鍵字: LED 驅動電源 功率因數(shù)校正

在LED照明技術日益普及的今天,LED驅動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關鍵字: LED照明技術 電磁干擾 驅動電源

開關電源具有效率高的特性,而且開關電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅動電源

關鍵字: LED 驅動電源 開關電源

LED驅動電源是把電源供應轉換為特定的電壓電流以驅動LED發(fā)光的電壓轉換器,通常情況下:LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: LED 隧道燈 驅動電源
關閉