日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當(dāng)前位置:首頁 > 智能硬件 > 人工智能AI
[導(dǎo)讀] 上一次我們用了單隱層的神經(jīng)網(wǎng)絡(luò),效果還可以改善,這一次就使用CNN。 卷積神經(jīng)網(wǎng)絡(luò) 上圖演示了卷積操作 LeNet-5式的卷積神經(jīng)網(wǎng)絡(luò),是計(jì)算機(jī)視覺領(lǐng)域近期取得

上一次我們用了單隱層的神經(jīng)網(wǎng)絡(luò),效果還可以改善,這一次就使用CNN。

卷積神經(jīng)網(wǎng)絡(luò)

上圖演示了卷積操作

LeNet-5式的卷積神經(jīng)網(wǎng)絡(luò),是計(jì)算機(jī)視覺領(lǐng)域近期取得的巨大突破的核心。卷積層和之前的全連接層不同,采用了一些技巧來避免過多的參數(shù)個(gè)數(shù),但保持了模型的描述能力。這些技巧是:
1, 局部聯(lián)結(jié):神經(jīng)元僅僅聯(lián)結(jié)前一層神經(jīng)元的一小部分。
2, 權(quán)重共享:在卷積層,神經(jīng)元子集之間的權(quán)重是共享的。(這些神經(jīng)元的形式被稱為特征圖[feature map])
3, 池化:對(duì)輸入進(jìn)行靜態(tài)的子采樣。

局部性和權(quán)重共享的圖示

卷積層的單元實(shí)際上連接了前一層神經(jīng)元中的一個(gè)2維patch,這個(gè)前提讓網(wǎng)絡(luò)利用了輸入中的2維結(jié)構(gòu)。

當(dāng)使用Lasagne中的卷積層時(shí),我們必須進(jìn)行一些輸入準(zhǔn)備。輸入不再像剛剛一樣是一個(gè)9216像素強(qiáng)度的扁平向量,而是一個(gè)有著(c,0,1)形式的三維矩陣,其中c代表通道(顏色),0和1對(duì)應(yīng)著圖像的x和y維度。在我們的問題中,具體的三維矩陣為(1,96,96),因?yàn)槲覀儍H僅使用了灰度一個(gè)顏色通道。

一個(gè)函數(shù)load2d對(duì)前述的load函數(shù)進(jìn)行了包裝,完成這個(gè)2維到三維的轉(zhuǎn)變:
def load2d(test=False, cols=None):
X, y = load(test=test)
X = X.reshape(-1, 1, 96, 96)
return X, y

我們將要?jiǎng)?chuàng)建一個(gè)具有三個(gè)卷積層和兩個(gè)全連接層的卷積神經(jīng)網(wǎng)絡(luò)。每個(gè)卷積層都跟著一個(gè)2*2的最大化池化層。初始卷積層有32個(gè)filter,之后每個(gè)卷積層我們把filter的數(shù)量翻番。全連接的隱層包含500個(gè)神經(jīng)元。

這里還是一樣沒有任何形式(懲罰權(quán)重或者dropout)的正則化。事實(shí)證明當(dāng)我們使用尺寸非常小的filter,如3*3或2*2,已經(jīng)起到了非常不錯(cuò)的正則化效果。

代碼如下:
net2 = NeuralNet(
layers=[
('input', layers.InputLayer),
('conv1', layers.Conv2DLayer),
('pool1', layers.MaxPool2DLayer),
('conv2', layers.Conv2DLayer),
('pool2', layers.MaxPool2DLayer),
('conv3', layers.Conv2DLayer),
('pool3', layers.MaxPool2DLayer),
('hidden4', layers.DenseLayer),
('hidden5', layers.DenseLayer),
('output', layers.DenseLayer),
],
input_shape=(None, 1, 96, 96),
conv1_num_filters=32, conv1_filter_size=(3, 3), pool1_pool_size=(2, 2),
conv2_num_filters=64, conv2_filter_size=(2, 2), pool2_pool_size=(2, 2),
conv3_num_filters=128, conv3_filter_size=(2, 2), pool3_pool_size=(2, 2),
hidden4_num_units=500, hidden5_num_units=500,
output_num_units=30, output_nonlinearity=None,

update_learning_rate=0.01,
update_momentum=0.9,

regression=True,
max_epochs=1000,
verbose=1,
)

X, y = load2d() # load 2-d data
net2.fit(X, y)

# Training for 1000 epochs will take a while. We'll pickle the
# trained model so that we can load it back later:
import cPickle as pickle
with open('net2.pickle', 'wb') as f:
pickle.dump(net2, f, -1)

訓(xùn)練這個(gè)網(wǎng)絡(luò)和第一個(gè)網(wǎng)絡(luò)相比,將要耗費(fèi)巨大的時(shí)空資源。每次迭代要慢15倍,整個(gè)1000次迭代下來要耗費(fèi)20多分鐘的時(shí)間,這還是在你有一個(gè)相當(dāng)不錯(cuò)的GPU的基礎(chǔ)上。

然而耐心總是得到回饋,我們的模型和結(jié)果自然比剛剛好得多。讓我們來看一看運(yùn)行腳本時(shí)的輸出。首先是輸出形狀的層列表,注意因?yàn)槲覀冞x擇的窗口尺寸,第一個(gè)卷積層的32個(gè)filter輸出了32張94*94 的特征圖。
InputLayer (None, 1, 96, 96) produces 9216 outputs
Conv2DCCLayer (None, 32, 94, 94) produces 282752 outputs
MaxPool2DCCLayer (None, 32, 47, 47) produces 70688 outputs
Conv2DCCLayer (None, 64, 46, 46) produces 135424 outputs
MaxPool2DCCLayer (None, 64, 23, 23) produces 33856 outputs
Conv2DCCLayer (None, 128, 22, 22) produces 61952 outputs
MaxPool2DCCLayer (None, 128, 11, 11) produces 15488 outputs
DenseLayer (None, 500) produces 500 outputs
DenseLayer (None, 500) produces 500 outputs
DenseLayer (None, 30) produces 30 outputs

接下來我們看到,和第一個(gè)網(wǎng)絡(luò)輸出相同,是每一次迭代訓(xùn)練損失和驗(yàn)證損失以及他們之間的比率。
Epoch | Train loss | Valid loss | Train / Val
--------|--------------|--------------|----------------
1 | 0.111763 | 0.042740 | 2.614934
2 | 0.018500 | 0.009413 | 1.965295
3 | 0.008598 | 0.007918 | 1.085823
4 | 0.007292 | 0.007284 | 1.001139
5 | 0.006783 | 0.006841 | 0.991525
...
500 | 0.001791 | 0.002013 | 0.889810
501 | 0.001789 | 0.002011 | 0.889433
502 | 0.001786 | 0.002009 | 0.889044
503 | 0.001783 | 0.002007 | 0.888534
504 | 0.001780 | 0.002004 | 0.888095
505 | 0.001777 | 0.002002 | 0.887699
...
995 | 0.001083 | 0.001568 | 0.690497
996 | 0.001082 | 0.001567 | 0.690216
997 | 0.001081 | 0.001567 | 0.689867
998 | 0.001080 | 0.001567 | 0.689595
999 | 0.001080 | 0.001567 | 0.689089
1000 | 0.001079 | 0.001566 | 0.688874

1000次迭代后的結(jié)果相對(duì)第一個(gè)網(wǎng)絡(luò),有了非常不錯(cuò)的改善,我們的RMSE也有不錯(cuò)的結(jié)果。
>>> np.sqrt(0.001566) * 48
1.8994904579913006

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動(dòng)電源

在工業(yè)自動(dòng)化蓬勃發(fā)展的當(dāng)下,工業(yè)電機(jī)作為核心動(dòng)力設(shè)備,其驅(qū)動(dòng)電源的性能直接關(guān)系到整個(gè)系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動(dòng)勢(shì)抑制與過流保護(hù)是驅(qū)動(dòng)電源設(shè)計(jì)中至關(guān)重要的兩個(gè)環(huán)節(jié),集成化方案的設(shè)計(jì)成為提升電機(jī)驅(qū)動(dòng)性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機(jī) 驅(qū)動(dòng)電源

LED 驅(qū)動(dòng)電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個(gè)照明設(shè)備的使用壽命。然而,在實(shí)際應(yīng)用中,LED 驅(qū)動(dòng)電源易損壞的問題卻十分常見,不僅增加了維護(hù)成本,還影響了用戶體驗(yàn)。要解決這一問題,需從設(shè)計(jì)、生...

關(guān)鍵字: 驅(qū)動(dòng)電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動(dòng)電源的公式,電感內(nèi)電流波動(dòng)大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計(jì) 驅(qū)動(dòng)電源

電動(dòng)汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動(dòng)汽車的核心技術(shù)之一是電機(jī)驅(qū)動(dòng)控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機(jī)驅(qū)動(dòng)系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動(dòng)汽車的動(dòng)力性能和...

關(guān)鍵字: 電動(dòng)汽車 新能源 驅(qū)動(dòng)電源

在現(xiàn)代城市建設(shè)中,街道及停車場(chǎng)照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進(jìn)步,高亮度白光發(fā)光二極管(LED)因其獨(dú)特的優(yōu)勢(shì)逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動(dòng)電源 LED

LED通用照明設(shè)計(jì)工程師會(huì)遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動(dòng)電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動(dòng)電源的電磁干擾(EMI)問題成為了一個(gè)不可忽視的挑戰(zhàn)。電磁干擾不僅會(huì)影響LED燈具的正常工作,還可能對(duì)周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動(dòng)電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機(jī)重量也有所下降,所以,現(xiàn)在的LED驅(qū)動(dòng)電源

關(guān)鍵字: LED 驅(qū)動(dòng)電源 開關(guān)電源

LED驅(qū)動(dòng)電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動(dòng)LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動(dòng)電源
關(guān)閉