日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當(dāng)前位置:首頁 > 電源 > 電源-能源動力
[導(dǎo)讀]鋰離子電池作為高效儲能元件,已經(jīng)廣泛的應(yīng)用在消費電子領(lǐng)域,從手機到筆記本電腦都有鋰離子電池的身影,鋰離子電池取得如此輝煌的成績得益于其超高的儲能密度,以及良好的

鋰離子電池作為高效儲能元件,已經(jīng)廣泛的應(yīng)用在消費電子領(lǐng)域,從手機到筆記本電腦都有鋰離子電池的身影,鋰離子電池取得如此輝煌的成績得益于其超高的儲能密度,以及良好的安全性能。隨著技術(shù)的不斷發(fā)展,鋰離子電池的能量密度、功率密度也在不斷的提高,這其中納米技術(shù)做出了不可磨滅的貢獻(xiàn)。說起納米技術(shù)在鋰離子電池中的應(yīng)用,小編第一個想到的就是LiFePO4,LiFePO4由于導(dǎo)電性差,為了改善其導(dǎo)電性,人們將其制備成了納米顆粒,極大的改善了LiFePO4的電化學(xué)性能。此外硅負(fù)極也是納米技術(shù)的受益者,納米硅顆粒很好的抑制了Si在嵌鋰的過程中的體積膨脹,改善了Si材料的循環(huán)性能。近日美國阿貢國家實驗室的Jun Lu在Nature nanotechnology雜志上發(fā)表文章,對納米技術(shù)在鋰離子電池上的應(yīng)用進(jìn)行了總結(jié)和回顧。

正極材料

1.LiFePO4材料

LiFePO4材料熱穩(wěn)定性好、成本低特性,吸引了人們的廣泛關(guān)注,但是由于LiFePO4材料內(nèi)部獨特的共價鍵結(jié)構(gòu),使得LFP材料的電子電導(dǎo)率很低,因此限制了其高倍率充放電性能,為此人們將LFP材料制成納米顆粒,并采用導(dǎo)電材料(例如碳)、導(dǎo)電聚合物和金屬等材料進(jìn)行包覆。此外人們還發(fā)現(xiàn)通過向納米LFP顆粒內(nèi)利用非化學(xué)計量比固溶體摻雜方法摻入高價金屬陽離子,可以將LFP納米顆粒的電子導(dǎo)電性提高108,從而使得LFP材料可以在3min之內(nèi)完成充放電,這一點對于電動汽車而言尤為重要。

下圖a為LFP晶體在(010)方向上的晶體機構(gòu),晶體中「PO6」八面體通過共用O原子的方式連接在一起,這種連接方式也導(dǎo)致了材料的電子電導(dǎo)率低。此外另一個影響LFP材料性能的問題是Fe占位問題,在1D方向上,Li+有很高的擴散系數(shù),但是部分Fe占據(jù)了Li的位置,從而影響了Li在(001)方向上的擴散速度,導(dǎo)致材料的極化大,倍率性能差。

 

 

2.抑制LiMn2O4材料分解

LMO材料具有三維Li+擴散通道,因此具有很高的離子擴散系數(shù),但是在低SoC狀態(tài)下會形成Mn3+,由于Jonh-Teller效應(yīng)的存在,導(dǎo)致LMO結(jié)構(gòu)不穩(wěn)定,部分Mn元素溶出到電解液中,并最終沉積到負(fù)極的表面,破壞SEI膜的結(jié)構(gòu)。目前,一種解決辦法是在LMO中添加一些低價主族金屬離子,例如Li等,取代部分Mn,從而提高在低SoC下Mn元素的價態(tài),減少Mn3+。另外一種解決辦法是在LMO材料顆粒的表面包覆一層10-20nm厚度的氧化物、氟化物,例如ZrO2,TiO2和SiO2等。

3.抑制NMC化學(xué)活性

NMC材料,特別是高鎳NMC材料比容量可高達(dá)200mAh/g以上,并具有非常優(yōu)異的循環(huán)性能。但是在充電的狀態(tài)下NMC材料極容易對電解液造成氧化,因此在實際生產(chǎn)中,我們不希望將NMC材料制成納米顆粒,但是我們可以通過納米包覆的手段來抑制NMC的化學(xué)活性。

為了抑制高鎳NMC材料與電解液的反應(yīng)活性,人們嘗試?yán)眉{米顆粒對材料進(jìn)行包覆處理,避免材料顆粒和電解液直接接觸,從而極大的提高了材料的循環(huán)壽命,如下圖a、b所示。原子層沉積也是保護NMC材料的重要方法,研究顯示3到5次原子層沉積可以獲得性能最好的NMC材料。但是由于NMC材料表面缺少酸性官能團,因此很難有效的進(jìn)行原子層沉積。此外核殼結(jié)構(gòu)的納米顆粒也是降低反應(yīng)活性的有效方法,如圖3d,高M(jìn)n外殼具有很好的穩(wěn)定性,但是容量較低,高鎳核心容量很高,但是反應(yīng)活性大,但是這一結(jié)構(gòu)還面臨一個問題就是由于晶格不匹配造成的內(nèi)部應(yīng)力,影響材料的循環(huán)性能,解決這一問題可以通過梯度濃度材料來實現(xiàn),如圖3e所示,Ni的濃度從核心到外殼逐漸降低,該材料能夠達(dá)到200mAh/g以上的高可逆容量,并具有長達(dá)1000次的循環(huán)壽命。

 

 

負(fù)極材料

1.石墨材料保護

石墨材料嵌鋰電壓低(0.15-0.25V vs Li+/Li),非常適合作為鋰離子電池的負(fù)極材料,但是石墨材料也有一些缺點。嵌鋰后的石墨具有很強的反應(yīng)活性,會與有機電解液發(fā)生反應(yīng),造成石墨片層脫落和電解液分解, SEI膜雖然能夠抑制電解液的分解,但是SEI膜并不能100%對石墨負(fù)極形成保護。目前常見石墨表面保護辦法有表面氧化和納米涂層技術(shù)。

納米涂層技術(shù)包括:無定形碳、金屬和金屬氧化物三大類,其中無定形碳主要是通過真空化學(xué)沉積CVD方法獲得,這種方法成本較低,適合大規(guī)模生產(chǎn)。金屬和金屬氧化物納米涂層主要是通過濕法化學(xué)的方法獲得(電鍍),能夠很好的對石墨進(jìn)行保護,防止電解液分解。

2.提升鈦酸鋰LTO和TiO2材料的倍率性能

LTO(Li4Ti5O12)材料安全性高,Li嵌入和脫嵌過程中不會產(chǎn)生應(yīng)力,嵌鋰電勢較高,不會引起電解液的分解,是一種非常優(yōu)異的負(fù)極材料,但是LTO材料還面臨一下問題:1)比容量低,理論比容量僅為175mAh/g;2)低電子和離子電導(dǎo)率。目前納米技術(shù)在LTO上主要有以下3方面的應(yīng)用:1)顆粒納米化;2)納米涂層技術(shù);3)LTO納米材料與導(dǎo)電材料復(fù)合。LTO材料納米化能夠有效的降低Li+的擴散距離,并增大LTO于電解液的接觸面積。納米涂層技術(shù)能夠加強LTO與電解液之間的電荷交換,改善倍率性能。幾種常見的納米涂層技術(shù)如下圖所示,其中圖a表示了納米TiO2與多孔碳材料的復(fù)合結(jié)構(gòu)材料。圖b展示的是如何制備LTO+CMK-3介孔碳復(fù)合材料的方法。

3.提高硅負(fù)極的能量密度

Si材料理論比容量達(dá)到3572mAh/g,遠(yuǎn)高于石墨材料,因此吸引了廣泛的關(guān)注,但是Si在嵌鋰和脫鋰的過程中會產(chǎn)生高達(dá)300%的體積膨脹,造成顆粒的破碎和活性物質(zhì)脫落,為了克服這一缺點,人們將Si材料制成納米顆粒,以便緩解Si顆粒膨脹產(chǎn)生的機械應(yīng)力。目前其他Si納米結(jié)構(gòu)包括1維的納米線,1維納米線能夠與集流體和電解液之間形成良好的接觸,并留出足夠的空間供Si膨脹,因此該材料的可逆比容量高達(dá)2000mAh/g,并具有良好的循環(huán)性能。

納米技術(shù)的在Li-S電池的應(yīng)用

 

 

Li-S電池能量密度高,成本低,是非常具有希望的下一代儲能電池,但是Li-S電池目前面臨的主要問題是S電導(dǎo)率低,以及嵌鋰產(chǎn)物溶解的問題,為了解決這一問題人們采用了多種復(fù)合納米材料技術(shù),例如通過將S與多孔中空碳或者金屬氧氧化物納米顆粒復(fù)合,可以顯著的提高S的穩(wěn)定性,提高電極的循環(huán)性能。此外,S與石墨烯材料的復(fù)合也能夠顯著的提高S負(fù)極的循環(huán)性能。

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動電源

在工業(yè)自動化蓬勃發(fā)展的當(dāng)下,工業(yè)電機作為核心動力設(shè)備,其驅(qū)動電源的性能直接關(guān)系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅(qū)動電源設(shè)計中至關(guān)重要的兩個環(huán)節(jié),集成化方案的設(shè)計成為提升電機驅(qū)動性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機 驅(qū)動電源

LED 驅(qū)動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設(shè)備的使用壽命。然而,在實際應(yīng)用中,LED 驅(qū)動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設(shè)計、生...

關(guān)鍵字: 驅(qū)動電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動電源的公式,電感內(nèi)電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計 驅(qū)動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術(shù)之一是電機驅(qū)動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅(qū)動系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動汽車的動力性能和...

關(guān)鍵字: 電動汽車 新能源 驅(qū)動電源

在現(xiàn)代城市建設(shè)中,街道及停車場照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進(jìn)步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動電源 LED

LED通用照明設(shè)計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅(qū)動電源

關(guān)鍵字: LED 驅(qū)動電源 開關(guān)電源

LED驅(qū)動電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動電源
關(guān)閉