日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當前位置:首頁 > 模擬 > 模擬
[導讀]摘要:為解決PWM控制器中輸出電壓與基準電壓的誤差放大問題,設計了一款高增益、寬帶寬、靜態(tài)電流小的新型誤差放大器,通過在二級放大器中間增加一級緩沖電路,克服補償電容的前饋效應,同時消除補償電容引入的零點。

摘要:為解決PWM控制器中輸出電壓與基準電壓的誤差放大問題,設計了一款高增益、寬帶寬、靜態(tài)電流小的新型誤差放大器,通過在二級放大器中間增加一級緩沖電路,克服補償電容的前饋效應,同時消除補償電容引入的零點。在Cadelence軟件平臺上,經過交流和瞬態(tài)仿真,電路0 dB帶寬達到55.5 MHz,電壓開環(huán)增益約67.2 dB,相位裕度為83.0°上升建立時間和下降建立時間分別為6.7 V/μs和5.7 V/μs共模抑制比為49.17 dB,電源抑制比為71.39 dB。該誤差放大器已經應用到了PWM芯片中,使得PWM最大、最小占空比可調,大幅提升了芯片系統的整體性能。
關鍵詞:PWM;誤差放大器;高增益;寬帶寬;占空比

    開關穩(wěn)壓電源具有集成度高、外圍電路簡單、電源效率高等優(yōu)點,在各種電子設備中得到廣泛的應用。尤其是在通信系統和控制系統等要求高穩(wěn)定性、高可靠性電源的設備中,開關穩(wěn)壓電源已經取代效率較低的線性穩(wěn)壓器。脈寬調制(Pulse-Width Modulation,PWM)芯片作為開關電源中的核心,其關鍵技術對我國國防和民用電源領域至關重要。這種調制方式的實現方法是由內部震蕩器產生一個頻率恒定的鋸齒波,與誤差放大器輸出的參考電壓比較,輸出方波用于控制調整管。誤差放大器輸出擺幅直接決定了PWM芯片的輸出占空比的最大、最小值,固定的輸出擺幅使得芯片輸出占空比的最大、最小值不可調節(jié),限制了芯片的應用,影響了PWM芯片的性能。
    本文設計的運放是整個PWM控制器的誤差放大器,作為電路中最重要的模塊之一,主要功能是獲得輸入電壓和基準電壓的誤差放大值,作為下一級比較器的輸入。與常見的誤差放大器相比,本文采用二級放大器組成的CMOS運算放大器進行設計,中間加入一級緩沖器電路,克服補償電容的前饋效應,同時消除補償電容引入的零點。該誤差放大器應用在PWM芯片中,隨著其輸出擺幅的調整,PWM芯片最大、最小輸出占空比可以控制,明顯改善了PWM芯片的性能。

1 電路設計
1.1 基本的CMOS二級運放電路
    基本的CMOS二級運放電路如圖1所示?;径夒娐酚善貌糠趾蛢杉壏糯箅娐窐嫵伞M5、VM6、VM8、VM9構成比例恒流源系統,對電路提供偏置。其中,VM9為等效電阻。第一級放大電路的電流偏置經由VM5管提供,VM1和VM2組成差分輸入對管,VM3和VM4充當其有源負載,并且在無損增益的情況下實現電路的單端輸出轉換。第二級放大電路是個簡單的共源放大電路,VM6提供電流偏置并充當有源負載,放大功能主要由VM7管實現。


    由于場效應管做共源放大器的時候,輸出端電壓與輸入端電壓反相,使得場效應管漏極和柵極之間的電容的充放電電流增大,從輸入端看進去,電容好像增大了Au倍(Au為該級放大電路的增益倍數),這就是密勒效應。密勒效應會導致電路頻率特性降低,因此,電路引入了密勒補償電容C1,將其跨接到該級放大器的輸出端和輸入端,起到頻率補償的作用。
    該運放結構簡單,易于實現,但是電路性能不夠理想。電路中的補償電容C1在實現頻率補償的同時,也引入了電壓輸出負反饋,過強的負反饋容易引起運放電路的不穩(wěn)定。


1.2 本設計采用的CMOS二級運放電路
    為了實現頻率補償,并消除負反饋對電路穩(wěn)定性的影響,本文中采用的二級運放對電路做了改進,中間加入一級緩沖器電路,克服補償電容的前饋效應,同時消除補償電容引入的零點。改進后的CMOS二級運放電路如圖2所示。


    改進后的CMOS二級運放電路仍采用比例電流鏡產生偏置電流,而比例電流鏡系統由VM5、VM6、VM7、VM10、VM11和VM12構成。受到模型參數的影響,為了達到適合的電位,采用VM11和V12兩個PMOS管共同作為等效電阻。電路的兩級放大電路沒有變化,仍是分別由VM5和VM7提供電流偏置。VM1、VM2和VM3、VM4構成帶有源負載的差分輸入級,第一級放大電路。VM7和VM9是個簡單的帶有源負載的共源放大器,第二級放大電路。兩級放大電路之間加入由VM6和VM8組成的緩沖器。其中,VM6管提供電流偏置,而VM8管工作在共漏組態(tài),增益為1,即源極跟隨器。源極跟隨器的存在使得密勒補償電容和輸出端不直接相連,同時實現了輸出端至電容端的電位平移。頻率提高到一定程度時,受到源跟隨器的制約,密勒補償電容無法將信號直接饋送到放大器輸出端,從而克服了密勒補償電容帶來的前饋效應,也消除了零點,改善運放的穩(wěn)定性。

2 誤差放大器參數設置
    根據本設計的整體電路要求,誤差放大器的性能指標設計目標設定如下:增益>60 dB,帶寬>50 MHz,相位裕度>80°,靜態(tài)電流<200 μA。
    1)首先確定工作點。已知電路是由5 V的單直流電源供電,為了使輸出電壓的擺幅盡可能大,則VM7管的直流工作區(qū)間應該設置在飽和區(qū),應滿足VG(M7)≥5 V+VTP條件。其中,VG(M7)是VM7的柵極電壓,VTP是PMOS管的開啟電壓,估算值為-1 V,因此VG(M7)設計取值4V。
    2)靜態(tài)電流和功耗設計。靜態(tài)電流要求在200μA以下,分配到各支路,應滿足以下條件:
   

    3)忽略溝道調制效應,確定MOS管的寬長比。因為要保證MOS管工作在飽和區(qū),所以MOS管電流和管子寬長比有如下關系:
   
    其中,ID是MOS漏電流,up是PMOS的空穴遷移率,Cox是單位面積柵極電容,VGS是MOS管的柵源電壓,VTP是PMOS管的閾值電壓。這些參數中,ID和VGS通過電路仿真測得,up、Cox和VTP的取值一般能在工藝文件中直接查到,也可以在電路里通過仿真、計算得出。以上參數確定后,可計算可得到MOS管的寬長比。
    4)運放增益的計算方法如下:
   
    其中,gm1和gm2分別是第一、第二級放大器的等效跨導,R1和R2分別是第一、第二級放大器的等效輸出電阻,計算公式如下:
   
    上面幾個式子中,uN是NMOS管的電子遷移率,rds是各MOS管的源漏電阻。

3 誤差放大器仿真結果
    在Cadence軟件中搭建模擬仿真驗證平臺,在電源和地線之間接入5 V直流電壓,誤差放大器的正向輸入端接入1.12 V的直流電壓(這個電壓取值在系統中由帶隙基準電壓源產生),反向輸入端輸入一個直流電位為1.12 V的正弦波。由于放大器的電壓增益較大,如果正弦波的交流幅度較大,會使得輸出出現失真,因此,這里將反相輸入端的正弦波電壓選取1 mV的交流幅度輸入。
    首先要進行直流工作點的驗證。通過dc仿真,觀測電路中的MOS管工作狀態(tài),如果有不在飽和區(qū)的管子,需要根據調整MOS管寬長比,直至所有管子的工作區(qū)(region)都顯示為“2”。
    直接測試電源電壓端的電流值,即可得到誤差放大器的靜態(tài)總電流。測得這個電流值I為173.4μA,由此可計算出誤差放大器的靜態(tài)總功耗:
   


    進行瞬態(tài)仿真,仿真結果如圖3所示。觀察電路波形,確認模塊實現了電壓的比較和誤差的放大功能。由瞬態(tài)仿真波形圖可以看出,輸入差模電壓為1 mV時,輸出電壓最大值可達4.15 V,最小值接近1.52 V,輸出擺幅不小于2.63 V。加大信號,可測得輸出電壓的建立時間:
   
    計算可得上升建立時間和下降建立時間分別為6.7 V/μs和5.7 V/μs。


    對電路進行交流增益仿真,觀察電路增益和單位增益帶寬,結果如圖4所示。
    根據交流仿真結果可知,電路0 dB帶寬達到55.5 MHz,電壓開環(huán)增益約67.2 dB,相位裕度為180°-96.97°≈83.0°。
    共模抑制比CMRR是放大器對輸入端共模信號的抑制能力,其計算表達式為
   
    其中Avd表示差模增益,Avc表示共模增益。把運算放大器連接成單位增益負反饋的模式,在運算放大器的同相和反相輸入端加上相同的交流電壓,進行交流仿真,得到的仿真結果如圖5所示,該曲線是1/CMRR,因此可以得到運算放大器的低頻共模抑制比為49.17 dB。


    電源抑制比PSRR是衡量電路對電源噪聲的抑制能力,把運算放大器連接成單位增益負反饋的模式,僅在供電電壓源上增加1 V的交流電壓,測試結果如圖6所示,該曲線是1/PMRR,因此運算放大器的低頻電源抑制比為71.39 dB,各項指標達到預期要求。



4 結論
    為解決PWM控制器中輸出電壓與基準電壓的誤差放大問題,本文設計了一款高增益,寬帶寬,輸出擺幅可以控制的新型誤差放大器。通過在二級放大電路中間增加一級緩沖電路,克服補償電容的前饋效應,同時消除補償電容引入的零點。通過交流仿真驗證,電路0 dB帶寬達到55.5 MHz,電壓開環(huán)增益約67.2 dB,相位裕度為83.0°上升建立時間和下降建立時間分別為6.7 V/μs和5.7 V/μs,共模抑制比和電源抑制比分別為49.17 dB和71.39 dB。其突出優(yōu)點是自頂向下設計,每一個器件的具體參數先通過手工計算再用軟件仿真逐步調整獲得,查找和修改錯誤方便,具有較大的靈活性。該誤差放大器已經成功運用到PWM芯片中,其獨特的結構使得PWM的最大輸出占空比和最小輸出占空比可以控制,大幅提升了芯片系統的整體性能。

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內容真實性等。需要轉載請聯系該專欄作者,如若文章內容侵犯您的權益,請及時聯系本站刪除。
換一批
延伸閱讀

武漢2025年9月9日 /美通社/ -- 7月24日,2025慧聰跨業(yè)品牌巡展——湖北?武漢站在武漢中南花園酒店隆重舉辦!本次巡展由慧聰安防網、慧聰物聯網、慧聰音響燈光網、慧聰LED屏網、慧聰教育網聯合主辦,吸引了安防、...

關鍵字: AI 希捷 BSP 平板

上海2025年9月9日 /美通社/ -- 9月8日,移遠通信宣布,其自研藍牙協議棧DynaBlue率先通過藍牙技術聯盟(SIG)BQB 6.1標準認證。作為移遠深耕短距離通信...

關鍵字: 藍牙協議棧 移遠通信 COM BSP

上海2025年9月9日 /美通社/ -- 為全面落實黨中央、國務院和上海市委、市政府關于加快發(fā)展人力資源服務業(yè)的決策部署,更好發(fā)揮人力資源服務業(yè)賦能百業(yè)作用,8月29日,以"AI智領 HR智鏈 靜候你來&quo...

關鍵字: 智能體 AI BSP 人工智能

北京2025年9月8日 /美通社/ -- 近日,易生支付與一汽出行達成合作,為其自主研發(fā)的"旗馭車管"車輛運營管理平臺提供全流程支付通道及技術支持。此次合作不僅提升了平臺對百余家企業(yè)客戶的運營管理效率...

關鍵字: 一汽 智能化 BSP SAAS

深圳2025年9月8日 /美通社/ -- 晶泰科技(2228.HK)今日宣布,由其助力智擎生技制藥(PharmaEngine, Inc.)發(fā)現的新一代PRMT5抑制劑PEP0...

關鍵字: 泰科 AI MT BSP

上海2025年9月5日 /美通社/ -- 由上海市經濟和信息化委員會、上海市發(fā)展和改革委員會、上海市商務委員會、上海市教育委員會、上海市科學技術委員會指導,東浩蘭生(集團)有限公司主辦,東浩蘭生會展集團上海工業(yè)商務展覽有...

關鍵字: 電子 BSP 芯片 自動駕駛

推進卓越制造,擴大產能并優(yōu)化布局 蘇州2025年9月5日 /美通社/ --?耐世特汽車系統與蘇州工業(yè)園區(qū)管委會正式簽署備忘錄,以設立耐世特亞太總部蘇州智能制造項目。...

關鍵字: 智能制造 BSP 汽車系統 線控

慕尼黑和北京2025年9月4日 /美通社/ -- 寶馬集團宣布,新世代首款量產車型BMW iX3將于9月5日全球首發(fā),9月8日震撼亮相慕尼黑車展。中國專屬版車型也將在年內與大家見面,2026年在國內投產。 寶馬集團董事...

關鍵字: 寶馬 慕尼黑 BSP 數字化

北京2025年9月4日 /美通社/ --?在全球新一輪科技革命與產業(yè)變革的澎湃浪潮中,人工智能作為引領創(chuàng)新的核心驅動力,正以前所未有的深度與廣度重塑各行業(yè)發(fā)展格局。體育領域深度融入科技變革浪潮,駛入數字化、智能化轉型快車...

關鍵字: 人工智能 智能體 AI BSP

上海2025年9月2日 /美通社/ -- 近日,由 ABB、Moxa(摩莎科技)等八家企業(yè)在上海聯合發(fā)起并成功舉辦"2025 Ethernet-APL 技術應用發(fā)展大會"。會議以"破界?融合...

關鍵字: ETHERNET 智能未來 BSP 工業(yè)通信
關閉