日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當前位置:首頁 > 工業(yè)控制 > 電子設計自動化
[導讀]假如你現(xiàn)在正在構建一個專業(yè)設計的電路實驗板,已經(jīng)完成了layout前所有需要進行的仿真工作,并查看了廠商有關特定封裝獲得良好熱設計的建議方法。你甚至仔細確認了寫在紙上的初步熱分析方程式,并確保其不超出IC結(jié)點溫度,并有較為寬松的容限。

假如你現(xiàn)在正在構建一個專業(yè)設計的電路實驗板,已經(jīng)完成了layout前所有需要進行的仿真工作,并查看了廠商有關特定封裝獲得良好熱設計的建議方法。你甚至仔細確認了寫在紙上的初步熱分析方程式,并確保其不超出IC結(jié)點溫度,并有較為寬松的容限。但稍后,你打開電源,卻發(fā)現(xiàn)IC摸起來非常熱。對此,你感到非常不滿,當然散熱專家以及可靠性設計人員更加焦慮?,F(xiàn)在,你該怎么辦?

在談到整體設計的可靠性時,通過讓IC 結(jié)點溫度遠離絕對最大值水平,在環(huán)境溫度不斷升高的條件下保持你的電路設計的完整性是一個重要的設計考慮因素。當你逐步接近具體電路設計中央芯片的最大功耗水平(Pd最大值)時更是如此。

進行散熱完整性分析的第一步,是深入理解IC封裝熱指標的基礎知識。

到目前為止,封裝熱性能最常見的度量標準是Theta JA,即從結(jié)點到環(huán)境所測得(或建模)的熱阻(參見圖1)。Theta JA值也是最需要解釋的內(nèi)容(參見圖2)。能夠極大影響Theta JA 測量和計算的因素包括:

* 貼裝板:是/否?

* 線跡:尺寸、成分、厚度和幾何結(jié)構

* 方向:水平還是垂直?

* 環(huán)境:體積

* 靠近程度:有其他表面靠近被測器件嗎?

圖 1 電氣網(wǎng)絡 Theta-JA 分析

圖 2 Theta-JA 解釋

熱阻(Theta JA)數(shù)據(jù)現(xiàn)在對使用新JEDEC標準的有引線表面貼裝封裝有效。實際數(shù)據(jù)產(chǎn)生于數(shù)個封裝上,同時熱模型在其余封裝上運行。按照封裝類型以及不同氣流水平顯示的Theta JA 值來對數(shù)據(jù)分組。

結(jié)點到環(huán)境數(shù)據(jù)是結(jié)點到外殼(Theta JC)的熱阻數(shù)據(jù)(參見圖3)。實際Theta JC數(shù)據(jù)會根據(jù)使用JEDEC印制電路板(PCB)測試的封裝生成。

圖 3 Theta-JC 解釋

但是,誰有這么多時間和耐性做完所有這種分析和測試——當然JEDEC除外!本文將告訴您在測試您設計的散熱完整性時如何安全地繞過這些步驟。

通過訪問散熱數(shù)據(jù),您可以將散熱數(shù)據(jù)用于您正使用的具體封裝。這里,您會發(fā)現(xiàn)額定參量曲線、不同流動空氣每分鐘直線英尺(LFM)的Tja,以及對您的設計很重要的其他建模數(shù)據(jù)。

所有這些信息都會幫助您不超出器件的最大結(jié)點溫度。尤為重要的是堅持廠商和JEDEC建議的封裝布局原則,例如:那些使用QFN封裝的器件。下列各種設計建議可幫助您實施最佳的散熱設計。

既然您閱讀了全部建模熱概述,并且驗證了您的電路板布局和散熱設計,那么就讓我們在不使用散熱建模軟件或者熱電偶測量實際溫度的情況下檢查您散熱設計的實際好壞程度吧。產(chǎn)品說明書中的Theta JA額定值一般基于諸如JEDEC #JESD51的行業(yè)標準,其使用的是一種標準化的布局和測試電路板。因此,您的散熱設計可能會不同,會有不同于標準的Theta JA,這是因為您具體的PC電路板設計需求。

如果您想知道您的設計離最佳散熱設計還有多遠,那么請對您的 PC 電路板設計執(zhí)行下列系統(tǒng)內(nèi)測試。(嘗試將電壓設置到其最大可能值,以測試極端條件。)

要想獲得最佳結(jié)果,請使用一臺烤箱(非熱感應系統(tǒng)),然后靠近電路板只測量Ta,因為烤箱有一些熱點。如果可能,請在電路板底部使用一個熱絕緣墊,以防止室溫空氣破壞測量。

圖 4 散熱設計改善技術的 TLC5940 級聯(lián)應用實例參考

首先,測量出您的IC在其實際設計環(huán)境(PC板)中的實際熱阻。然后,將其同“理想”JEDEC 數(shù)值對比。您需要一個具有熱錯誤標志(TEF)或類似功能的IC,這種功能可以指示IC結(jié)點處的超高溫狀態(tài)。例如,我們使用TI的TLC5940 LED驅(qū)動器解決方案芯片。一般而言,大多數(shù) IC的最大Tj(查看您的產(chǎn)品說明書獲取實際數(shù)值)約為150℃。就TLC5940 器件來說,TEF的 Tj變化范圍在150℃到170℃ 之間。

此處的測試中,我們只關心測試電路板上具體芯片的Tj情況。我們將其用作方程式的替代引用,該方程式計算得到具體測試PC電路板的熱阻Theta JA。它應該非常明顯地表明我們的散熱設計質(zhì)量。如果芯片具有這種散熱片,則對幾塊PC電路板進行測試以獲得一些區(qū)域(例如:PowerPad)焊接完整性的較好采樣,目的是正確使用這種獨特的封裝散熱片技術。要找到TEF 允許的器件最大Tj,請將PC電路板置入恒溫槽中,同時器件無負載且僅運行在靜態(tài)狀態(tài)。緩慢升高恒溫槽溫度,直到TEF被觸發(fā)。出現(xiàn)這種情況時恒溫槽的溫度點便為Tj,因為Ta = Tj。這種情況下,功耗(Pd)必須處在非常低的靜態(tài)水平,并且可被視作零。將該溫度記錄為 Tj。它將用于我們的方程式,計算 Theta JA。

其次,計算出您電路的最大Pd。將恒溫槽溫度升高到產(chǎn)品說明書規(guī)定的IC最大環(huán)境溫度以上約10或15度(將該溫度記錄為Ta)。這樣做會使TEF更快地通過自加熱?,F(xiàn)在,通過緩慢增加Pd直至TEF斷開,我們將全部負載施加到IC。在TLC5940中,我們改變外部電阻R(IREF),其設置器件的Io吸收電流。如果超高溫電路有滯后,則電路會緩慢地溫度循環(huán),從而要求我們緩慢地降低Pd直至循環(huán)停止。這時,恒溫槽溫度應被記錄為Pd最大值。

最后,要獲得您電路板的Theta JA,請將測得的Tj值、Ta值和Pd最大值插入到下列方程式中:

Theta JA = (Tj-Ta)/Pd max

如果您擁有一個較好的散熱設計,則該值應接近 IC 產(chǎn)品說明書中的Theta JA。

幸運的是,這種測試不依賴于外殼(Tc)或結(jié)點(Tj)的直接溫度測量,因為很難準確地在現(xiàn)場測量到它們。

小貼士:

* 一定要將PC電路板放入恒溫槽中幾分鐘

* 將Vsupply X Iq加上理想Pd,考慮Iq的IC功耗。這可能是也可能不是一個忽略因素。

在本文一開始提及的情況中,如果您設計的Pd接近Pd最大值,則您可以利用如下方法來改善散熱設計:使用更好的散熱定額封裝。在TLC5940案例中,帶散熱墊(PowerPad)的HTSSOP可能更佳(參見表1)。

表 1 散熱等級

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

2025 IPC CEMAC電子制造年會將于9月25日至26日在上海舉辦。年會以“Shaping a Sustainable Future(共塑可持續(xù)未來)”為主題,匯聚國內(nèi)外專家學者、產(chǎn)業(yè)領袖與制造精英,圍繞先進封裝、...

關鍵字: PCB 電子制造 AI

2025 IPC CEMAC電子制造年會將于9月25日至26日在上海浦東新區(qū)舉辦。年會以“Shaping a Sustainable Future(共塑可持續(xù)未來)”為主題,匯聚國內(nèi)外專家學者、產(chǎn)業(yè)領袖與制造精英,圍繞先...

關鍵字: PCB AI 數(shù)字化

在PCB制造過程中,孔無銅現(xiàn)象作為致命性缺陷之一,直接導致電氣連接失效和產(chǎn)品報廢。該問題涉及鉆孔、化學處理、電鍍等全流程,其成因復雜且相互交織。本文將從工藝機理、材料特性及設備控制三個維度,系統(tǒng)解析孔無銅的根源并提出解決...

關鍵字: PCB 孔無銅

在電子制造領域,PCB孔銅斷裂是導致電路失效的典型問題,其隱蔽性與破壞性常引發(fā)批量性質(zhì)量事故。本文結(jié)合實際案例與失效分析數(shù)據(jù),系統(tǒng)梳理孔銅斷裂的五大核心原因,為行業(yè)提供可落地的解決方案。

關鍵字: PCB 孔銅斷裂

在電子制造領域,噴錫板(HASL,Hot Air Solder Levelling)因成本低廉、工藝成熟,仍占據(jù)中低端PCB市場30%以上的份額。然而,隨著無鉛化趨勢推進,HASL工藝的拒焊(Non-Wetting)與退...

關鍵字: PCB 噴錫板 HASL

在PCB制造過程中,阻焊油墨作為關鍵功能層,其質(zhì)量直接影響產(chǎn)品可靠性。然而,油墨氣泡、脫落、顯影不凈等異常問題長期困擾行業(yè),尤其在5G通信、汽車電子等高可靠性領域,阻焊缺陷導致的失效占比高達15%-20%。本文結(jié)合典型失...

關鍵字: PCB 阻焊油墨

在5G通信、新能源汽車、工業(yè)控制等高功率密度應用場景中,傳統(tǒng)有機基板已難以滿足散熱與可靠性需求。陶瓷基板憑借其高熱導率、低熱膨脹系數(shù)及優(yōu)異化學穩(wěn)定性,成為功率器件封裝的核心材料。本文從PCB設計規(guī)范與陶瓷基板導入標準兩大...

關鍵字: PCB 陶瓷基板

在電子制造領域,PCB(印刷電路板)作為核心組件,其質(zhì)量直接影響整機性能與可靠性。然而,受材料、工藝、環(huán)境等多重因素影響,PCB生產(chǎn)過程中常出現(xiàn)短路、開路、焊接不良等缺陷。本文基于行業(yè)實踐與失效分析案例,系統(tǒng)梳理PCB常...

關鍵字: PCB 印刷電路板

在PCB(印制電路板)制造過程中,感光阻焊油墨作為保護電路、防止焊接短路的關鍵材料,其性能穩(wěn)定性直接影響產(chǎn)品良率與可靠性。然而,受工藝參數(shù)、材料特性及環(huán)境因素影響,油墨異?,F(xiàn)象頻發(fā)。本文聚焦顯影不凈、黃變、附著力不足等典...

關鍵字: PCB 感光阻焊油墨 印制電路板
關閉