日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當前位置:首頁 > 電源 > 功率器件
[導讀]1 引言隨著技術的發(fā)展,電腦CPU的工作頻率越來越高,其信息處理能力及各方面功能越來越強,這樣就要求為之供電的適配器功率相應較大。目前DELL等公司已為其生產銷售的移動P

1 引言

隨著技術的發(fā)展,電腦CPU的工作頻率越來越高,其信息處理能力及各方面功能越來越強,這樣就要求為之供電的適配器功率相應較大。目前DELL等公司已為其生產銷售的移動PC、筆記本電腦,向電源生產商提出了150W甚至200W適配器的供貨要求。對于如此大功率適配器,從安全角度考慮,要求適配器的密封性能要好;為便于攜帶,同時又希望適配器的體積小。但這些要求卻不利于適配器的散熱(由于損耗所產生的熱量),為此必須采用高效率、低損耗的解決方法。

針對下一代大功率筆記本電腦適配器,本文提出了一種高效率的拓撲結構,并分析研究了其電路工作原理,最后給出了電路參數(shù)的選取方法和實驗結果。

2 工作原理

筆記本電腦適配器是一種高質量直流輸出電源,一般要求它具有寬的交流輸入電壓范圍:90V~264V,并且能夠適應輸入電壓頻率的波動: 47Hz~63Hz。對于輸入功率大于75瓦的適配器,還要求其輸入電流諧波滿足IEC-1000-3-2 Class D標準,為此適配器須有功率因數(shù)校正(PFC)功能。

本文介紹的大功率150瓦筆記本電腦適配器,其輸出電壓:直流12V;電壓調整率: £ ±5%;額定輸出電流:12.5A。為滿足高功率密度及低成本等要求,經綜合考慮,該適配器采用兩級電路架構,如圖1所示。前級PFC是升壓Boost變換器結構,采用電流臨界斷續(xù)模式(DCMB )控制;后級直流變換DC/DC部分采用雙管正激變換器并對二次側實行同步整流。

 

 

圖1 適配器的電路結構

2.1 功率因數(shù)校正(PFC)電路

由圖1可知,交流輸入電壓Vi經整流橋CR1、輸入濾波器L1、C1后,通過電感L2、開關S1、二極管D1組成的Boost 電路變換為直流母線輸出電壓VB。

 

 

圖2 PFC電流臨界斷續(xù)模式控制原理時序

PFC工作原理時序[1],如圖2所示。PFC輸出電壓VB的反饋信號與PFC控制芯片(如ST公司L6561)內部基準信號比較后,產生一電壓誤差信號;在誤差放大器的帶寬足夠低時(如20Hz以下),該電壓誤差信號就是一個直流量;此信號和輸入整流電壓相乘后,得到PFC電感峰值電流基準信號(見圖 2)。開關S1開通后,PFC電感電流iL2線形上升,達到峰值電流基準時,S1關斷;隨后iL2通過二極管D1續(xù)流,同時向電容C2充電,在電壓VB的壓迫下,iL2線形下降;當PFC控制芯片檢測到電感電流iL2為零時,開關S1將再次開通,開始下一個開關周期。電感電流iL2經輸入濾波器L1、C1 濾波,得到連續(xù)光滑的正弦輸入電流,即圖2中所示的平均電流,其值為PFC電感峰值電流基準的一半。

由于開關S1是在電流iL2為零時開通的,故開關S1是零電流開通(ZCS),因此PFC的開關損耗大為減少;另外由于S1開通時,二極管D1的電流已經為零,所以D1的反向恢復問題也得到解決,由反向恢復引起的損耗將不存在, D1用普通的二極管即可。因控制簡單,PFC可采用低成本的控制芯片。

由上分析可知,電流臨界斷續(xù)模式控制的 PFC不僅變換效率高,而且還具有控制簡單、成本低等優(yōu)點。

2.2 雙管正激DC/DC直流變換電路

為將較高的直流母線電壓VB(約390V)變換成較低的適配器輸出電壓Vo(12V),DC/DC部分采用了雙管正激直流變換器,它由開關管S2、 S3、續(xù)流二極管D2、D3、變壓器Tr、同步整流管S4、同步續(xù)流管S5、輸出濾波器Lo、Co構成(參看圖1)。變壓器的作用是實現(xiàn)原、副邊隔離及輸入、輸出電壓匹配。

 

 

圖3 雙管正激直流變換器控制原理時序

雙管正激直流變換器的控制原理時序,見圖3所示(以濾波電感電流iLo連續(xù)為例)。為分析方便,假定開關管S2、S3的漏源電容為零,這樣其漏源電壓就能夠瞬時變化。其中Vgs2、Vgs3分別是S2、S3的控制信號,兩者時序完全相同。

t0~t1:t0時刻,S2、S3同時開通,變壓器Tr原邊繞組EF的電壓為VB,即VEF=VB,則副邊電壓VGH=VB*N2/N1,輸出濾波電感 Lo中的電流iLo經電感Lo、電容Co(包括負載)、同步整流管S4、變壓器副邊繞組HG流通,電感Lo的前端電壓VG=VGH=VB*N2/N1。由于此時VG大于適配器輸出電壓Vo,故iLo從iLomin線形上升到iLomax。

t1~t2:t1時刻,S2、S3同時關斷,變壓器原邊繞組電流經二極管D2、D3續(xù)流,同時變壓器進行磁復位,此時VEF=-VB,副邊電壓VGH=-VB*N2/N1,S2、S3的漏源電壓VDS2= VDS3=VB;iLo經電感Lo、電容Co(包括負載)、同步續(xù)流管S5流通,Lo的前端電壓VG=0。由于VG小于輸出電壓Vo,故iLo從 iLomax線形下降。

t2~t3:t2時刻,變壓器原邊繞組電流續(xù)流完畢且磁復位結束,S2、S3仍然關斷,此時VEF=0,原邊電壓由開關S2、S3分擔,即VDS2=VDS3=VB/2(假定S2、S3型號相同),這樣開關S2、S3在下一次開通時的損耗就大大降低了。副邊電壓VGH= 0,iLo經電感Lo、電容Co(包括負載)、同步續(xù)流管S5流通。t3時刻,iLo線形下降至iLomin后,S2、S3同時開通,開始下一個開關周期。

為提高效率,用開關管S4、S5代替二極管以減低二次側的導通損耗。同步整流管S4的導通時間和開關S2、S3的導通時間同步,同步續(xù)流管S5的導通時間和開關S2、S3的關斷時間同步。為保證變壓器可靠復位,雙管正激直流變換器的最大占空比應小于0.5。[!--empirenews.page--]

3 參數(shù)選擇和試驗結果

3.1 參數(shù)選擇

本文研制的150瓦筆記本電腦適配器,其中PFC控制芯片采用ST公司生產的L6561,其價格較低,外圍控制電路所用元器件少;設定PFC的輸出電壓VB=390V(略大于最大輸入電壓的幅值);PFC其他器件參數(shù)如下:

共模濾波電感(圖1中未畫出):LFZ2805V08;

差模濾波電感L1:73uH;PFC Boost電感L2:165uH;

全波整流橋CR1:RBV-406;二極管D1:8ETH06;

開關管S1:ST公司STP12NM50FP,12A/500V,Rds=0.30W(Typ);

輸入濾波電容C1:1uF/400V;直流母線輸出濾波電容C2:100uF/400V。

雙管正激直流變換器的控制芯片采用價格便宜的UC3845;考慮到負載動態(tài)響應要求及輸出阻抗,設定滿載時占空比為0.38;變壓器原、副邊匝比為N1:N2=56:5,選用philips公司生產的鐵芯EFD30-3F3;其他器件參數(shù)如下:

原邊開關管S2、S3:STP12NM50FP;續(xù)流二極管D2、D3:MUR160;

副邊開關管S4、S5:Fairchild公司FDP038AN06A0, 3.8mW/80A/60V;

輸出濾波電容Co:Rubycon ZL series,1500uF/16V;

輸出濾波電感Lo:20uH;開關頻率:180k Hz。

3.2 試驗結果

圖4為Vi=90V時PFC滿載輸入電壓及輸入電流試驗波形,可以看出輸入電流波形的正弦性好,經測定功率因數(shù)PF值大于0.99;圖5為雙管正激直流變換器輸出濾波電感前端電壓VG、原邊下管S3漏源電壓VDS3的試驗波形,由圖可知在原邊開關管S2、S3開通前,S3的漏源電壓VDS3=VB/2。由于S2、S3的漏源電容實際不為零,VDS3(以及VDS2)從VB下降到VB/2是通過其漏源電容和變壓器激磁電感諧振來完成的,故VDS3下降(從 VB到VB/2)需要一定的時間,并具有一定的斜率。

 

 

圖4 PFC滿載90V時輸入電壓、輸入電流試驗波形圖5 DC/DC輸出電感前端電壓、原邊下管漏源電壓試驗波形

圖6為PFC在不同輸入電壓下的滿載效率曲線(不包括控制損耗),該效率隨輸入電壓的升高而升高,在90V時最低,但也高達95.08%;圖7為 DC/DC變換器在不同輸出負載時的效率曲線(不包括控制損耗),其150W滿載時效率高達96.04%;圖8為不同輸入電壓下適配器的滿載效率曲線(包括控制損耗),滿載時適配器的整體效率超過90.80%,該效率曲線的特點也是隨輸入電壓的升高而升高,在230V時可高達93.57%。

 

 

圖6 不同輸入電壓下PFC滿載效率曲線

 

 

圖7 DC/DC不同輸出負載時的效率曲線

 

 

圖8 不同輸入電壓下適配器的滿載效率曲線

4 結論

本文研制的150瓦筆記本電腦適配器具有兩級電路拓撲結構,前級PFC采用電流臨界斷續(xù)模式控制,后級DC/DC部分采用雙管正激變換器。PFC和 DC/DC各自獨立,控制電路簡單,成本相對低廉。適配器的整體效率高,滿載時超過90.80%。實驗結果表明該適配器具有高效率、高功率因數(shù)、及低成本等優(yōu)點。

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內容真實性等。需要轉載請聯(lián)系該專欄作者,如若文章內容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: 驅動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設備,其驅動電源的性能直接關系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅動電源設計中至關重要的兩個環(huán)節(jié),集成化方案的設計成為提升電機驅動性能的關鍵。

關鍵字: 工業(yè)電機 驅動電源

LED 驅動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設備的使用壽命。然而,在實際應用中,LED 驅動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設計、生...

關鍵字: 驅動電源 照明系統(tǒng) 散熱

根據LED驅動電源的公式,電感內電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關鍵字: LED 設計 驅動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產業(yè)的重要發(fā)展方向。電動汽車的核心技術之一是電機驅動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅動系統(tǒng)中的關鍵元件,其性能直接影響到電動汽車的動力性能和...

關鍵字: 電動汽車 新能源 驅動電源

在現(xiàn)代城市建設中,街道及停車場照明作為基礎設施的重要組成部分,其質量和效率直接關系到城市的公共安全、居民生活質量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關鍵字: 發(fā)光二極管 驅動電源 LED

LED通用照明設計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關鍵字: LED 驅動電源 功率因數(shù)校正

在LED照明技術日益普及的今天,LED驅動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關鍵字: LED照明技術 電磁干擾 驅動電源

開關電源具有效率高的特性,而且開關電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅動電源

關鍵字: LED 驅動電源 開關電源

LED驅動電源是把電源供應轉換為特定的電壓電流以驅動LED發(fā)光的電壓轉換器,通常情況下:LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: LED 隧道燈 驅動電源
關閉